# Problem instance J02 with translation at the switches. # The set of nodes in the network set N := 1 2 3 4 5 6 7 8 9 10; # The set of links in the network set E := (1,3) (1,9) (2,7) (2,10) (4,8) (5,6) (6,8) (9,10) (1,7) (2,6) (2,9) (3,9) (4,10) (5,8) (8,10); # The set of modular sizes for structures and couplers set W := 4 8 16 20 40 80; # The set of OD pairs and # the number wavelengths required for each o-d pair param: D: r := 1 2 2 1 6 20 1 7 8 1 10 16 2 4 4 2 6 9 2 8 20 2 9 17 2 10 5 3 4 5 3 6 19 3 9 13 3 10 12 4 5 2 4 8 16 4 9 2 5 6 4 5 9 10 5 10 2 6 8 3 6 10 7 7 10 7 8 9 10 8 10 11 ; # The set of available structures set S := 1 2 3 4 5; # The edges in each structure set Es[1] := (5,6) (5,8) (6,8); set Es[2] := (2,6) (2,10) (5,6) (5,8) (6,8) (8,10); set Es[3] := (1,7) (1,9) (2,7) (2,9); set Es[4] := (4,8) (4,10) (8,10); set Es[5] := (1,3) (1,7) (1,9) (2,7) (2,9) (3,9); # The set of available switches set C := 1 2 3 4 5 6; # The structure costs param a: 4 8 16 20 40 80 := 1 35 63 105 140 280 525 2 23 41 69 92 184 345 3 39 70 117 156 312 585 4 15 27 45 60 120 225 5 45 81 135 180 360 675 ; # The switch costs param f: 4 8 16 20 40 80 := 1 5 9 15 20 40 74 2 7 12 20 27 55 104 3 5 9 15 20 40 74 4 6 10 17 23 47 89 5 8 14 23 31 63 119 6 3 5 9 12 24 45 ; # The set of optical cycle set K := 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30; # The set of optical cycles serving each demand pair set J[1,2] := 1 2; set J[1,6] := 3; set J[1,7] := 4 5; set J[1,10] := 6; set J[2,4] := 7; set J[2,6] := 8; set J[2,8] := 9; set J[2,9] := 10 11; set J[2,10] := 12; set J[3,4] := 13; set J[3,6] := 14; set J[3,9] := 15; set J[3,10] := 16; set J[4,5] := 17; set J[4,8] := 18; set J[4,9] := 19; set J[5,6] := 20 21; set J[5,9] := 22; set J[5,10] := 23; set J[6,8] := 24 25; set J[6,10] := 26; set J[7,10] := 27; set J[8,9] := 28; set J[8,10] := 29 30; # The set of paths set P := 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60; # The set of paths making up each optical cycle set Pk[1] := 1; set Pk[2] := 2; set Pk[3] := 3 4 5; set Pk[4] := 6; set Pk[5] := 7; set Pk[6] := 8 9 10; set Pk[7] := 11 12 13 14; set Pk[8] := 15; set Pk[9] := 16; set Pk[10] := 17; set Pk[11] := 18; set Pk[12] := 19; set Pk[13] := 20 21 22 23 24 25 26; set Pk[14] := 27 28 29 30; set Pk[15] := 31; set Pk[16] := 32 33 34 35; set Pk[17] := 36 37 38; set Pk[18] := 39; set Pk[19] := 40 41 42 43 44 45; set Pk[20] := 46; set Pk[21] := 47; set Pk[22] := 48 49 50; set Pk[23] := 51; set Pk[24] := 52; set Pk[25] := 53; set Pk[26] := 54; set Pk[27] := 55 56 57; set Pk[28] := 58 59 60; set Pk[29] := 61; set Pk[30] := 62; # The set of paths using each switch set L[2] := 3 4 8 9 23 24 29 30 34 35 42 43 48 49 55 56 58 59; set L[3] := 4 5 9 10 20 21 27 28 32 33 44 45 49 50 56 57 59 60; set L[1] := 11 12 24 25 41 42; set L[6] := 12 13 25 26 36 37 40 41; set L[4] := 13 14 21 22 37 38 43 44; set L[5] := 22 23 28 29 33 34; # The set of paths using each edge of each structure set Pes[1,7,3] := 1 3 6 8 17 23 29 34; set Pes[2,7,3] := 1 3 6 8 17 23 29 34 55; set Pes[1,9,3] := 1 6 17; set Pes[2,9,3] := 1 6 17 43 49 59; set Pes[1,7,5] := 2 4 7 9 18; set Pes[2,7,5] := 2 4 7 9 18 56; set Pes[1,9,5] := 2 7 18 31; set Pes[2,9,5] := 2 7 18 20 27 32 45 50 60; set Pes[2,6,2] := 4 10 11 15 16 19 24 28 35 42 48 51 54 56 58 62; set Pes[2,10,2] := 5 9 13 15 16 19 21 30 33 44 49 51 54 57 59 62; set Pes[8,10,2] := 5 10 15 16 19 30 35 38 49 51 54 56 59 62; set Pes[6,8,2] := 5 10 15 16 19 30 35 47 53 54 56 58 62; set Pes[6,8,1] := 12 25 41 46 52; set Pes[4,8,4] := 13 26 36 39 40 61; set Pes[4,10,4] := 14 22 37 39 43 61; set Pes[3,9,5] := 20 27 31 32; set Pes[1,3,5] := 22 28 31 33; set Pes[5,8,1] := 37 46 52; set Pes[5,8,2] := 38 47 49 51 53; set Pes[8,10,4] := 39 61; set Pes[5,6,1] := 46 52; set Pes[5,6,2] := 47 48 51 53; set H := (1,3) (5,13) (9,49) (13,44) (18,45) (24,58) (33,45) (44,56) (1,6) (5,15) (9,50) (13,49) (18,50) (24,59) (33,49) (44,57) (1,8) (5,16) (9,51) (13,51) (18,56) (24,62) (33,50) (44,59) (1,17) (5,19) (9,54) (13,54) (18,60) (25,37) (33,51) (44,62) (1,23) (5,21) (9,56) (13,57) (19,21) (25,41) (33,54) (45,50) (1,29) (5,28) (9,57) (13,59) (19,24) (25,46) (33,56) (45,56) (1,34) (5,30) (9,58) (13,61) (19,28) (25,52) (33,57) (45,60) (1,43) (5,33) (9,59) (13,62) (19,30) (26,36) (33,59) (46,52) (1,49) (5,35) (9,60) (14,22) (19,33) (26,37) (33,60) (47,48) (1,55) (5,38) (9,62) (14,37) (19,35) (26,39) (33,62) (47,49) (1,59) (5,44) (10,11) (14,39) (19,38) (26,40) (34,43) (47,51) (2,4) (5,47) (10,15) (14,43) (19,42) (26,61) (34,49) (47,53) (2,7) (5,49) (10,16) (14,61) (19,44) (27,28) (34,55) (47,54) (2,9) (5,51) (10,19) (15,16) (19,47) (27,31) (34,59) (47,56) (2,18) (5,53) (10,21) (15,19) (19,48) (27,32) (35,38) (47,58) (2,20) (5,54) (10,24) (15,21) (19,49) (27,33) (35,42) (47,62) (2,27) (5,56) (10,28) (15,24) (19,51) (27,45) (35,47) (48,49) (2,31) (5,57) (10,30) (15,28) (19,53) (27,50) (35,48) (48,51) (2,32) (5,58) (10,33) (15,30) (19,54) (27,56) (35,49) (48,53) (2,45) (5,59) (10,35) (15,33) (19,56) (27,60) (35,51) (48,54) (2,50) (5,62) (10,38) (15,35) (19,57) (28,31) (35,53) (48,56) (2,56) (6,8) (10,42) (15,38) (19,58) (28,32) (35,54) (48,58) (2,60) (6,17) (10,44) (15,42) (19,59) (28,33) (35,56) (48,59) (3,6) (6,23) (10,47) (15,44) (19,62) (28,35) (35,58) (48,62) (3,8) (6,29) (10,48) (15,47) (20,27) (28,42) (35,59) (49,51) (3,17) (6,34) (10,49) (15,48) (20,28) (28,44) (35,62) (49,53) (3,23) (6,43) (10,51) (15,49) (20,31) (28,45) (36,37) (49,54) (3,29) (6,49) (10,53) (15,51) (20,32) (28,48) (36,39) (49,55) (3,34) (6,55) (10,54) (15,53) (20,33) (28,49) (36,40) (49,56) (3,43) (6,59) (10,56) (15,54) (20,45) (28,50) (36,61) (49,57) (3,49) (7,9) (10,57) (15,56) (20,50) (28,51) (37,39) (49,58) (3,55) (7,18) (10,58) (15,57) (20,56) (28,54) (37,40) (49,59) (3,59) (7,20) (10,59) (15,58) (20,60) (28,56) (37,41) (49,62) (4,5) (7,27) (10,62) (15,59) (21,28) (28,57) (37,43) (50,56) (4,7) (7,31) (11,15) (15,62) (21,30) (28,58) (37,46) (50,60) (4,9) (7,32) (11,16) (16,19) (21,33) (28,59) (37,52) (51,53) (4,10) (7,45) (11,19) (16,21) (21,38) (28,60) (37,61) (51,54) (4,11) (7,50) (11,24) (16,24) (21,44) (28,62) (38,44) (51,56) (4,15) (7,56) (11,28) (16,28) (21,49) (29,34) (38,47) (51,57) (4,16) (7,60) (11,35) (16,30) (21,51) (29,43) (38,49) (51,58) (4,18) (8,17) (11,42) (16,33) (21,54) (29,49) (38,51) (51,59) (4,19) (8,23) (11,48) (16,35) (21,56) (29,55) (38,53) (51,62) (4,20) (8,29) (11,51) (16,38) (21,57) (29,59) (38,54) (53,54) (4,21) (8,34) (11,54) (16,42) (21,59) (30,33) (38,56) (53,56) (4,24) (8,43) (11,56) (16,44) (21,62) (30,35) (38,59) (53,58) (4,27) (8,49) (11,58) (16,47) (22,28) (30,38) (38,62) (53,62) (4,28) (8,55) (11,62) (16,48) (22,31) (30,42) (39,40) (54,56) (4,30) (8,59) (12,25) (16,49) (22,33) (30,44) (39,43) (54,57) (4,32) (9,10) (12,37) (16,51) (22,37) (30,47) (39,61) (54,58) (4,33) (9,13) (12,41) (16,53) (22,39) (30,48) (40,61) (54,59) (4,35) (9,15) (12,46) (16,54) (22,43) (30,49) (41,46) (54,62) (4,42) (9,16) (12,52) (16,56) (22,61) (30,51) (41,52) (55,59) (4,44) (9,18) (13,14) (16,57) (23,29) (30,53) (42,48) (56,57) (4,45) (9,19) (13,15) (16,58) (23,34) (30,54) (42,49) (56,58) (4,48) (9,20) (13,16) (16,59) (23,43) (30,56) (42,51) (56,59) (4,49) (9,21) (13,19) (16,62) (23,49) (30,57) (42,54) (56,60) (4,50) (9,24) (13,21) (17,23) (23,55) (30,58) (42,56) (56,62) (4,51) (9,27) (13,22) (17,29) (23,59) (30,59) (42,58) (57,59) (4,54) (9,28) (13,26) (17,34) (24,28) (30,62) (42,59) (57,62) (4,56) (9,30) (13,30) (17,43) (24,30) (31,32) (42,62) (58,59) (4,57) (9,32) (13,33) (17,49) (24,35) (31,33) (43,49) (58,62) (4,58) (9,33) (13,36) (17,55) (24,42) (32,33) (43,55) (59,62) (4,59) (9,35) (13,37) (17,59) (24,48) (32,45) (43,59) (4,60) (9,42) (13,38) (18,20) (24,49) (32,50) (43,61) (4,62) (9,44) (13,39) (18,27) (24,51) (32,56) (44,49) (5,9) (9,45) (13,40) (18,31) (24,54) (32,60) (44,51) (5,10) (9,48) (13,43) (18,32) (24,56) (33,44) (44,54);