Detail Preserving Contrast Reduction for still cameras

Prasanna V Rangarajan, Panos Papamichalis

Southern Methodist University

October 11, 2006

It was a landscape with an ominous shadow

God said, "Let there be light", and there was light !!

Objective

Objective

Contrast Reduction

• Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*

• Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*

• Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

• Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*

• Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

- Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*
- Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

Motivation Wide Dynamic Range (WDR)

• Cannot expose simultaneously for shadows and highlights

- Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*
- Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

Motivation Wide Dynamic Range (WDR)

• Cannot expose simultaneously for shadows and highlights

- Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*
- Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

Motivation Wide Dynamic Range (WDR)

Cannot expose simultaneously for shadows and highlights

Outline

Existing Techniques

- Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*
- Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

Motivation Wide Dynamic Range (WDR)

• Cannot expose simultaneously for shadows and highlights

Outline

- Existing Techniques
- Proposed Framework

- Enhance the visibility of detail in the dark areas (*shadows*) *by globally reducing large contrasts*
- Preserve detail in the bright areas (*highlights*) *by reintroducing detail*

Motivation Wide Dynamic Range (WDR)

• Cannot expose simultaneously for shadows and highlights

Outline

- Existing Techniques
- Proposed Framework
- Results

Existing Techniques Original Image

Existing Techniques Photoshop Shadow/Highlight Plugin

Existing Techniques *Photo Flair (Retinex)*

Existing Techniques Shadow Illuminator

Existing Techniques *Proposed Framework*

• Inspired by ideas from *dynamic range compression*

- Inspired by ideas from dynamic range compression
- Linear Model for Image Formation GrayIntensity = Illumination . Reflectance I(x, y) = L(x, y) R(x, y)
 - Illumination : spatial distribution of light in the scene
 - Reflectance : describes the appearance of surfaces & objects

- Inspired by ideas from dynamic range compression
- Linear Model for Image Formation

$$\label{eq:GrayIntensity} \begin{split} & \text{GrayIntensity} = Illumination \ . \ \text{Reflectance} \\ & I(x,y) = L(x,y) \ \ \text{R}(x,y) \end{split}$$

- Illumination : spatial distribution of light in the scene
- Reflectance : describes the appearance of surfaces & objects
- WDR images exhibit significant changes in Illumination
- Changes in the Reflectance are perceived as image detail
- CCD imaging sensors are linear devices
- RAW images captured by CCD sensors contain more detail than the corresponding 8-bit images

- Inspired by ideas from dynamic range compression
- Linear Model for Image Formation

$$\label{eq:GrayIntensity} \begin{split} & GrayIntensity = Illumination \ . \ Reflectance \\ & I(x,y) = L(x,y) \ R(x,y) \end{split}$$

- Illumination : spatial distribution of light in the scene
- Reflectance : describes the appearance of surfaces & objects
- WDR images exhibit significant changes in Illumination
- Changes in the Reflectance are perceived as image detail
- CCD imaging sensors are linear devices
- RAW images captured by CCD sensors contain more detail than the corresponding 8-bit images
- Image Enhancement Model
 - Enhance the visibility of *shadow detail* by reducing the contrast in the Illumination component
 - Reintroduce the lost *highlight detail* using the Reflectance component

Estimating the Illumination and Reflectance

The task of solving I(x, y) = L(x, y) R(x, y) for the Illumination L(x, y) & the Reflectance R(x, y) is ill-posed for a single image

- The task of solving I(x, y) = L(x, y)R(x, y) for the Illumination L(x, y) & the Reflectance R(x, y) is ill-posed for a single image
- However,

- The task of solving I(x, y) = L(x, y)R(x, y) for the Illumination L(x, y) & the Reflectance R(x, y) is ill-posed for a single image
- However,
 - Within a uniformly lit region L(x, y) varies more smoothly than R(x, y). *Estimate* L(x, y) *by blurring* I(x, y)

- The task of solving I(x, y) = L(x, y)R(x, y) for the Illumination L(x, y) & the Reflectance R(x, y) is ill-posed for a single image
- However,
 - Within a uniformly lit region L(x, y) varies more smoothly than R(x, y). *Estimate* L(x, y) *by blurring* I(x, y)
 - There can be abrupt changes or discontinuities in L(x,y). Estimate L(x,y) by blurring over weak-edges in I(x,y), while preserving the stronger edges in I(x,y)

- The task of solving I(x, y) = L(x, y) R(x, y) for the Illumination L(x, y) & the Reflectance R(x, y) is ill-posed for a single image
- However,
 - Within a uniformly lit region L(x, y) varies more smoothly than R(x, y). *Estimate* L(x, y) *by blurring* I(x, y)
 - There can be abrupt changes or discontinuities in L(x,y). Estimate L(x,y) by blurring over weak-edges in I(x,y), while preserving the stronger edges in I(x,y)

Estimating the Illumination using TV Regularization

We solve for L(x, y) as

$$L = \underset{L^n}{argmin} \int_{\Omega} \left[\lambda (L^n - I)^2 + |\nabla L^n| \right] d\Omega$$

Estimating the Illumination using TV Regularization

Ve solve for L(x, y) as The unit satisfies

$$L = \underset{L^n}{\arg\min} \int_{\Omega} \left[\lambda (L^n - I)^2 + |\nabla L^n| \right] d\Omega$$

V

The unique minimizer of this functional satisfies

$$\mathsf{L}-\mathsf{I}=\frac{1}{2\lambda}\mathbf{div}\left(\frac{\nabla\mathsf{L}}{|\nabla\mathsf{L}|}\right)$$

Estimating the Illumination using TV Regularization

$$\begin{split} \text{We solve for } L(x,y) \text{ as} & \text{The unique minimizer of this functional} \\ L &= \underset{L^{\pi}}{arg\min} \int_{\Omega} \left[\lambda (L^{\pi} - I)^2 + |\nabla L^{\pi}| \right] d\Omega & L - I = \frac{1}{2\lambda} \text{div} \left(\frac{\nabla L}{|\nabla L|} \right) \end{split}$$

Gradient Descent Scheme

$$L_{t+1}(x,y) = L_t(x,y) + \Delta t \left[2\lambda (I(x,y) - L_t(x,y)) + \nabla . \left(\frac{\nabla L_t(x,y)}{|\nabla L_t(x,y)|} \right) \right]$$

Estimating the Illumination using TV Regularization

$$\begin{array}{ll} \text{We solve for } L(x,y) \text{ as} & \text{The unique minimizer of this functional} \\ L = \underset{L^n}{\arg\min} \int_{\Omega} \left[\lambda (L^n - I)^2 + |\nabla L^n| \right] d\Omega & L - I = \frac{1}{2\lambda} \textbf{div} \left(\frac{\nabla L}{|\nabla L|} \right) \end{array}$$

Gradient Descent Scheme

$$L_{t+1}(x,y) = L_t(x,y) + \Delta t \left[2\lambda(I(x,y) - L_t(x,y)) + \nabla \cdot \left(\frac{\nabla L_t(x,y)}{|\nabla L_t(x,y)|} \right) \right]$$

Detail Preserving Contrast Reduction

• Reducing the contrast in the Illumination component

$$L_{\text{new}} = \frac{\text{log}(1+\mu L)}{\text{log}(1+\mu)}$$

Detail Preserving Contrast Reduction

• Reducing the contrast in the Illumination component

	Scene	μ	E.C.V	Lavg
$L_{new} = \frac{\log(1 + \mu L)}{\log(1 + \mu L)}$	Night	L	L	S
$log(1+\mu)$	Sunset	Μ	L	Μ
	Daylight	S	Μ	L

 $E.C.V = 2^{\Delta Z} = 2^{|ZnPk - ZnL_{avg}|}$

Detail Preserving Contrast Reduction

• Reducing the contrast in the Illumination component

$L_{new} = \frac{log(1+\mu L)}{log(1+\mu)}$	Scene	μ	E.C.V	Lavg	
	Night	L	L	S	
	Sunset	Μ	L	Μ	
E.C.V	Daylight	S	Μ	L	
$\mu = \frac{1}{\sqrt{L_{avg}}}$	$E.C.V = 2^{\Delta Z} = 2^{ ZnPk - ZnL_{avg} }$				

Detail Preserving Contrast Reduction

• Reducing the contrast in the Illumination component

1 (1 , 1)	Scene	μ	E.C.V	Lavg	
$L_{new} = \frac{\log(1 + \mu L)}{\log(1 + \mu L)}$	Night	L	L	S	
$log(1+\mu)$	Sunset	Μ	L	Μ	
E.C.V	Daylight	S	Μ	L	
$\mu = \frac{1}{\sqrt{L_{avg}}}$	$E.C.V = 2^{\Delta Z} = 2^{ ZnPk - ZnL_{avg} }$				

• Ideal Recombination Strategy

Detail Preserving Contrast Reduction for Gray Images

Detail Preserving Contrast Reduction for Gray Images

Original Image

Illumination

Reflectance

ce New Illumination Enhanced Image

Detail Preserving Contrast Reduction for Gray Images

Original Image

Illumination

Reflectance

ce New Illumination Enhanced Image

- Enhanced visibility of shadow detail
- But, highlight detail may appear washed out

Detail Preserving Contrast Reduction for Color Images

• Reintroduce the lost detail in the *highlight areas* using the estimated Reflectance

Original Image

Enhanced Image using the Proposed Approach

Enhanced Image using Shadow Illuminator (8b DPCR)

Enhanced Image using Photo Flair (*Retinex*)

Original Image

Enhanced Image using the Proposed Approach

Enhanced Image using Shadow Illuminator (8b DPCR)

Enhanced Image using Photo Flair (*Retinex*)

Original Image

Enhanced Image using the Proposed Approach

Enhanced Image using Shadow Illuminator (8b DPCR)

Enhanced Image using Photo Flair (*Retinex*)

Original Image

Enhanced Image using the Proposed Approach

Enhanced Image using Shadow Illuminator (8b DPCR)

Enhanced Image using Photo Flair (*Retinex*)

Conclusions

The proposed DPCR scheme

- succeeds in reducing contrast while still preserving detail
- produces an aesthetically pleasing image and
- does not induce color shifts