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Abstract

We take a fresh look at the problem of removing
occluders in an image using inpainting. We examine a
geometric method that utilizes a second image of the scene
from a different viewpoint, to identify the occluded objects.
We recover the missing intensities by using the geometric re-
lationship between corresponding points in the two images.
The relationship is generally specified by the “epipolar line
constraint”, and degenerates to a projective homography
under special circumstances. For this reason, we use the
plane + parallax approach to estimate the epipolar geom-
etry relating the two images. We fill-in missing pixels by
copying information from the respective epipolar lines in
the second image.

The success of the proposed framework hinges on the
ability to estimate the “epipolar line constraint” from noisy
correspondences. To this end, we analyze the uncertainty in
estimating a homography from noisy correspondences. We
rely on the knowledge of this uncertainty to identify parallax
vectors best suited for estimating the epipolar geometry.

We do not make any explicit assumptions about the na-
ture or the extent of camera motion, only requiring that the
occluded objects are static and undergo limited perspective
change. To illustrate the effectiveness of the proposed ap-
proach, we “inpaint” occluders in wide-baseline situations.

1. Introduction
The objective of image inpainting is to produce a mod-

ified image where the inpainted region merges seamlessly
with the rest of the image, in a manner not obvious to the
untrained eye. Applications of image inpainting include
occluding object removal, wire/rig removal, retouching of
damaged paintings & photographs and error concealment.

Traditional image inpainting methods[1, 2, 5, 12] infer
missing intensities using basic principles like continuation
of edges (level lines), and texture synthesis. The quality of
the inpainting depends on the size of the missing region, the
geometry of the occluded objects, and the fill-order1. Small
regions are inpainted effortlessly, while inpainting large re-
gions is difficult and often produces unrealistic results.

The proposed approach extends the scope of current im-
age inpainting methods, by using the epipolar line con-
straint to infer missing intensities from an additional image

1fill-order refers to the order in which the missing pixels are inpainted.

(exemplar image). The use of an exemplar image permits
us to inpaint large regions, regardless of the geometry of
the occluded objects and the fill-order1.

The use of an exemplar image in inpainting is a recent
development. Kang et al. [11] recover the missing pixels by
assuming that the two images are affinely related. Jain[9]
assumes that the occluded objects are planar in nature, and
recovers the missing intensities using a projective homogra-
phy. Also, there are spatio-temporal techniques that attempt
to recover missing pixels using several images. Please re-
fer to [15] for a review of such techniques. In this paper,
we focus our attention on image inpainting using a single
exemplar image, for arbitrary camera motion.

The novelty of our approach lies in the use of camera
and-or occluder motion to reveal the missing intensities.
Motion in the occluder either fully or partially reveals the
occluded objects in the exemplar image. In the case of static
occluders, camera motion induces an apparent motion in the
occluders, depending on their depth. As a result, previously
occluded objects are revealed fully or partially in the ex-
emplar image. In either situation, the occluded objects can
experience significant foreshortening due to camera motion.
As this makes the task of inpainting difficult, we require that
occluded objects undergo limited perspective change.

From now on, we will refer to the image to be inpainted
as view-1 and the exemplar image as view-2.

2. Proposed Approach
The challenge in the proposed inpainting framework, lies

in accurately estimating the geometric relationship between
views-1 & 2 . The relationship is completely specified by a
homography in these situations

• occluded object/region belongs to planar facet or
• small baseline and distant occluders or
• small change in camera perspective between views-1 & 2

We inpaint the missing region in view-1, by warping
view-2 into view-1, using the inverse homography. In all
other situations, the “epipolar line constraint” describes
the geometric relationship between corresponding points in
views-1 & 2. We inpaint missing pixels in view-1, by copy-
ing intensities from the respective epipolar lines in view-2.

In either situation, we need to identify putative point cor-
respondences in the two views. We start by identifying
corners with pixel precision using the fast corner detection
algorithm[14], and use log-polar normalized cross correla-
tion ( LP-NCC )[16] to match the neighborhood of each cor-
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Step1 Step2 Step3
Mark planar facets, missing regions in view-1 Identify Epipolar Lines in view-1 view-1 before inpainting

(a) (b) (c)

(d) (e) (f)
view-2 Identify Epipolar Lines in view-2 view-1 after inpainting

The objective is to inpaint parts of the pillar-like structure (transparent red region) in Fig1(a), using an image of the scene
(Fig1(d)), from a different viewpoint. We inpaint the missing pixels in Fig1(a) by copying intensities from the respective epipolar
lines in Fig1(e). Epipolar lines sharing the same color in Figs1(b),1(e) are in correspondence. The result is shown in Fig1(f).
The challenge is to accurately estimate the epipolar geometry relating Fig1(a) and Fig1(d), from a limited number of noisy
point correspondences. The proposed approach relies on the uncertainty in estimating homographies and parallax vectors from
noisy point correspondences, to accurately estimate the epipolar geometry.

Figure 1. Image Inpainting using Epipolar Geometry for the Valbonne church scene (courtesy INRIA Robotvis Group)

ner in view-1, with every corner in view-2. We prune the list
of matches to obtain unique point correspondences. Unfor-
tunately, these point correspondences are noisy. This prob-
lem plagues most corner estimation and correspondence
matching algorithms. So, we proceed to estimate the ho-
mography or the epipolar geometry relating the two views,
from noisy correspondences (Steps 1 & 2 in Fig.1). This is
followed by the actual inpainting (Step 3 in Fig.1).

The success of the proposed inpainting framework
hinges on the ability to estimate the epipolar geometry from
noisy correspondences. So we start by analyzing the uncer-

tainty in estimating a homography from noisy correspon-
dences, in Sec–3.2. In Sec–3.3.2, we propagate the uncer-
tainty in estimating a homography to parallax vectors. In
Sec–4 we examine the use of uncertainty analysis in inpaint-
ing, and provide examples of inpainting using the proposed
approach in Sec–5.

3. Uncertainty Analysis

Different structures for the uncertainty in a homog-
raphy, have been proposed by Criminisi[4], Suter[3],
Kanatani[10], and Hartley [7]. Unfortunately, these struc-



tures cannot be used directly to find : parallax vectors and
planar facets that are best suited for estimating epipolar ge-
ometry from noisy point correspondences. With this objec-
tive in mind, we re-examine the problem of determining the
uncertainty in a homography. The utility of the proposed
structure of uncertainty lies in the ease with which it can
be extended to different normalization schemes, and propa-
gated through projective entities such as algebraic transfer
error, parallax vectors, lines and epipoles.

3.1. Notation
• boldface symbols are vectors, underlined symbols are homo-

geneous vectors, and CAPITAL letters represent matrices
• The ordered pair (x,y) represents a point in Euclidian 2-

space (R2). The 3-vector x = (x,y,1)T is the corresponding
point in homogeneous coordinates ( Projective 2-space P2 ).

• A(i, :) represents the ith row of the matrix A
• diag(v) is a diagonal matrix with entries of the vector v

along the principal diagonal
• Id denotes a d x d identity matrix
• vec-operator[8] vectorizes a matrix by stacking its columns.
• [e]xv denotes the use of skew-symmetric matrices to compute

the vector product e x v
• ||v|| denotes the l2−norm of the vector v

3.2. Homography
A homography is a non-singular matrix that de-

scribes a linear mapping in homogenous coordinates
(P2). If a homography Hp relates point correspondences
{(xi,yi),(x′i,y

′
i)}, the following bilinear relationships hold

x′i =
h11xi +h12yi +h13

h31xi +h32yi +h33
y′i =

h21xi +h22yi +h23

h31xi +h32yi +h33
(1)

where hi j are entries of the matrix Hp. eq.(1) suggests that
only the ratio of the entries of Hp is significant. As there
are only 8 independent ratios amongst the 9 elements of
Hp, a homography has 8 degrees of freedom (d.o.f.). This
forms the basis for estimating a homography from 4 or more
point correspondences using the Direct Linear Transform
algorithm[7].

3.2.1 Direct Linear Transform (DLT) algorithm

Using kronecker products and the vec operator[8], we
rewrite eq.(1) in the form of the linear system

[
1 0 −xi

′

0 1 −yi
′

]
⊗ xi

T

︸ ︷︷ ︸
Api




h11
h12
· · ·
h33


︸ ︷︷ ︸

hp = vec(HT
p )

=
[

0
0

]
︸︷︷︸

0

(2)

Given M > 4 sets of point correspondences related by a
homography Hp, we estimate Hp by solving the following
overdetermined linear system [7]

Aphp = 0, Ap =
[

AT
p1 . . . AT

pM

]T
(3)

In the absence of noise, Ap is rank-deficient and hp ∈
nullspace of Ap. In the presence of noise Ap is almost al-
ways full rank. In either case, hp is estimated as the right
singular vector corresponding to the least singular value of
Ap

2. It is easy to observe that hp has 8 d.o.f. as ||hp||= 1.
There is always an uncertainty associated with estimat-

ing Hp using DLT, as the point correspondeces used to esti-
mate Hp are noisy. Typically, noise affects corners in both
views-1 & 2. But, for the sake of analysis we assume that
only corners {(x′i,y′i)} in view-2 are affected by noise. This
assumption is valid only when we seek to find the corner in
view-2 that corresponds to a noisy corner in view-1.

3.2.2 Noise model

We assume that the noise ε ′i = (ε ′xi,ε
′
yi)

T that affects the cor-
ners (x′i,y

′
i) in view-2 is i.i.d3 gaussian with zero mean and

covariance E{ε ′i ε
′
i
T} = diag( [σ2

x , σ2
y ] ). This model im-

plies that the error in localizing a corner in the x-direction
is independent of the error in the y-direction.

Under these assumptions, we examine the effect of esti-
mating a homography from noisy pixel coordinates, using
the DLT algorithm.

3.2.3 Perturbation Analysis of the DLT algorithm

In the presence of noise, we estimate the noisy homography
hp + δhp as the right singular vector corresponding to the
least singular value of the noisy matrix

Ap +Np =


[

1 0 −(x′1 + ε ′x1)
0 1 −(y′1 + ε ′y1)

]
⊗ x1

T

. . . . . . . . .[
1 0 −(x′M + ε ′xM)
0 1 −(y′M + ε ′yM)

]
⊗ xM

T

 ,

where
Np = [ . . . Ni

p
T

. . . ]T ,

Ni
p =

[
0 0 −ε ′xi
0 0 −ε ′yi

]
⊗ xi

T

(4)

For small noise levels4, the effect of estimating a homog-
raphy from noisy correspondences is best explained by the
theory of first-order perturbation analysis [4, 6]. Using this
theory, we express the perturbation in the homography δhp ,
and its associated uncertainty Λhp in the compact form

δhp = Ap
† (W ⊗ I2)Ξ (5)

Λhp = E{δhp δ
T
hp
}= Ap

†(W ⊗ I2)E{ΞΞ
T }(W T ⊗ I2)Ap

†T
(6)

= Ap
†
[
WW T ⊗diag( [ σ

2
x , σ

2
y ] )
]

Ap
†T

(7)

where A†
p is the pseudoinverse of the matrix Ap ,

W = diag([ ω1 . . . ωM ]) = diag([ Hp(3, :) x1 . . . Hp(3, :) xM ]),
2 hp is the solution to the Total Least Squares problem of eq.(3)
3independent and identically distributed
4Quantifying “small” is difficult since it depends on the image size. A

noise variance of 4 pixels in a 1024 x 768 image is << noise variance of
4 pixels in a 352 x 288 image.



Ξ = [ ε ′x1 ε ′y1 . . . ε ′xM ε ′yM ]T . The matrix W is comprised of
the homogenous scale factors {ωi}, while Ξ is comprised
of the noise affecting correspondences in view-2.

Appendix-1 provides details on deriving the expressions
for δhp and Λhp . Smaller entries in Λhp correspond to a
smaller uncertainty in estimating hp, and vice-versa.

The proposed structure of Λhp (eq.(7)) has geometric ap-
peal as explained in Sec-3.2.4, and is easily extended to
normalized DLT[7] in Sec-3.2.5. In addition, Λhp can be
propagated to projective entities such as algebraic trans-
fer error (Sec-3.2.6), parallax vectors (Sec-3.3.2), lines and
epipoles. Further, the structure of Λhp in eq.(7) allows us
to implicitly estimate the unknown noise variances, as de-
scribed in 3.2.6.

Another advantage of the proposed structure of Λhp is
that it can be readily expressed in alternative forms5, such as
the structure of the covariance matrix proposed by Hartley
[7] and Kanatani [10].

Λhp =
([(

W−1 ⊗ I2
)

Ap
]T [

E{ΞΞ
T }
]−1 [(

W−1 ⊗ I2
)

Ap
])†

(8)

3.2.4 Structure of the covariance matrix Λhp

• Λhp is singular, rank(Λhp) <= 8, and hp = null(Λhp)
The redundancy (||hp|| = 1) in estimating a homogra-
phy using DLT, forces Λhp to be singular. As a result,
there is no proper density function associated with the
perturbation δhp .

• The uncertainty in hp increases with noise variance
But for large noise variances the expression for Λhp is in-
accurate, as first-order perturbation analysis of the matrix
Ap +Np is no longer sufficient.

• The uncertainty in hp increases with the homogenous
scale factors {ωi}
By choosing point correspondences that are clustered
around the fixed-point6 of the homography, we can re-
duce the uncertainty in hp. But, we run the risk of incor-
rectly estimating a projective transform as being nearly
affine. Alternatively, we could arrive at a better estimate
of the homography by choosing point correspondences
that are spread over a larger area. But this comes at
the expense of increased uncertainty (larger ωi’s). This
tradeoff is reminiscent of the bias-variance tradeoff in
standard estimators.

• The uncertainty in hp depends on the orientation of the
observed planar facet
The least uncertainty in hp results when the camera in
view-2 is looking straight at the planar facet (fronto-
parallel situation). The reason is that the least error in
localizing corners in view-2 results, when camera-2 is in
a fronto-parallel situation. Based on this observation, we
choose the planar facet that most directly faces camera-

5 Using the property (A B)† = B† A†, we can rewrite eq.(6) as eq.(8)
6xi

′ = xi, ⇒ ωi = 1

2 (reduces uncertainty) and has the largest area (reduces
bias), to estimate the epipolar geometry.

Unfortunately, the DLT algorithm outlined in Sec-3.2.1 can-
not be used to estimate the homography Hp, as the ordering
of the right singular vectors of Ap is sensitive to small per-
turbations in the pixel coordinates. Hartley[7]points out that
the sensitivity is due to the large condition number of the
matrix Ap

T Ap, and observes that an anisotropic normaliza-
tion of the pixel coordinates alleviates the problem.

Instead of estimating a homography from noisy pixel co-
ordinates, we estimate the homography in normalized coor-
dinates, using the Normalized DLT algorithm[7]. To be spe-
cific, the normalized homography hn

p + δhn
p is estimated as

the right singular vector corresponding to the least singular
value of the normalized matrix

An
p +Nn

p =



[
1 0 −(xn

1
′+ εn′

x1)
0 1 −(yn

1
′+ εn′

y1)

]
⊗ xn

1
T

. . .[
1 0 −(xn

M
′+ εn′

xM)
0 1 −(yn

M
′+ εn′

yM)

]
⊗ xn

M
T

 (9)

xn
i =

N1

N1(3,3)
xi ,

 xn
i
′+ εn′

xi
yn

i
′+ εn′

yi
1

=
N2

N2(3,3)

 xi
′+ ε ′xi

yi
′+ ε ′yi

1


︸ ︷︷ ︸

x̂′i

(10)

N1 = ichol

(
M

∑
i=1

xi xi
T

)
,N2 = ichol

(
M

∑
i=1

x̂′i x̂′i
T
)

(11)

The inverse cholesky factors[6] N1 & N2 normalize pixel co-
ordinates in views-1 & 2 respectively. For small noise lev-
els, the dependence of N2 on the noise terms in eq.(11) is so
negligible that we ignore it. The homography Hp in pixel
coordinates is related to the homography Hn

p in normalized
coordinates as

Hp =
N−1

2 Hn
p N1

||N−1
2 Hn

p N1||
, hp =

(N−1
2 ⊗NT

1 ) hn
p

||(N−1
2 ⊗NT

1 ) hn
p||

=
h
||h||

(12)

3.2.5 Perturbation Analysis of Normalized DLT

Along the lines of Sec-3.2.3, we can express the perturba-
tion in the normalized homography (δhn

p) as

δhn
p
= An

p
† (W n⊗ I2)Ξ

n (13)

W n = diag([ Hn
p(3, :) xn

1 . . . Hn
p(3, :) xn

M ]), Ξn =
[

εn′
x1 εn′

y1 . . .εn′
xM εn′

yM

]T
The corresponding uncertainty is specified as

Λhn
p
= An

p
†
[
W nW nT ⊗N2S diag( [ σ

2
x , σ

2
y ] ) NT

2S

]
An

p
†T

(14)

where N2S =
[

N2(1,1) N2(1,2)
N2(2,1) N2(2,2)

]
Appendix-2 provides details on deriving Λhn

p . Notice that
the structure of Λhn

p in eq.(14) is similar to the structure of
Λhp in eq.(7), with the exception of the term N2S.



However, eq.(14) only describes the uncertainty of the
normalized homography hn

p. We need to propagate Λn
hp

through eq.(12), to determine Λhp , in pixel coordinates. The
process begins by propagating noise through h in eq.(12),
and finally through the normalization h

||h|| . The uncertainty
in hp has the following structure

Λhp =
1
||h||

[
I9−

hhT

||h||2

]
Λh

[
I9−

hhT

||h||2

]
1
||h||

(15)

where h =(N−1
2 ⊗NT

1 )hn
p ,and Λh =(N−1

2 ⊗NT
1 ) Λhn

p
7 (N−T

2 ⊗N1)

Substituting for Λhn
p from eq.(14), we find that

Λhp = MhAn
p

†
[
(W n)2⊗N2S diag( [ σ

2
x , σ

2
y ] ) NT

2S

]
An

p
†T

Mh
T

where Mh =
1
||h||

[
I9−

hhT

||h||2

] (
N−1

2 ⊗NT
1

)
(16)

Alternatively, we can rewrite eq.(16) in terms of σ2
x & σ2

y as

Λhp = σ
2
x Λ

x
hp

+ σ
2
y Λ

y
hp

(17)

Λ
x
hp

= MhAn
p

†
[
(W n)2⊗N2S diag( [ 1, 0 ] )NT

2S

]
An

p
†Mh

T

Λ
y
hp

= MhAn
p

†
[
(W n)2⊗N2S diag( [ 0, 1 ] )NT

2S

]
An

p
†Mh

T

In Sec-3.2.6, we use this structure of Λhp to find σ2
x & σ2

y .
Comments about the structure of the uncertainty Λhp from
Sec-3.2.4 are still valid.

We conclude the study of uncertainty in estimating
homographies using DLT, by noting that the estimated
homography ĥp is a random vector with

mean hp true homography defined in eq.(12)
covariance Λhp defined in eq.(16)

Note: There is no proper density function associated with
ĥp, as Λhp is singular.

3.2.6 Numerically estimating Λhp

Provided we know the noise variances (σ2
x ,σ2

y ), we can find
an estimate Λ̂hp of the true covariance Λhp , by replacing true
quantities ( An

p,H
n
p ) in eq.(17), with observed or estimated

quantities ( An
p +Nn

p, Ĥn
p ).

In the absence of noise statistics, we estimate σ2
x ,σ2

y
from the statistics of the algebraic transfer error in view-2.
The algebraic transfer error for the ith point correspon-
dence is defined as

r′i =
[

x′i + ε ′xi
y′i + ε ′yi

]
− 1

Ĥp(3, :) xi

[
Ĥp(1, :) xi

Ĥp(2, :) xi

]
︸ ︷︷ ︸

y′i

(18)

7 From eq.(12) we find that a perturbation δ n
hp

in hn
p, induces the

perturbation δh = (N−1
2 ⊗NT

1 ) δhn
p , in h. The corresponding uncertainty is

Λh = E{δhδh
T }= (N−1

2 ⊗NT
1 ) Λhn

p (N−T
2 ⊗N1)

r′i is a random vector with 2 sources of uncertainty
1. noisy point correspondences in view-2
2. error in point transfer using the noisy homography Ĥp

Assuming the transfer errors to be gaussian distributed8,

r′i ∼N
(

0,diag( [ σ
2
x ,σ2

y ] )+Λy′i

)
, Λy′i = Ji

hp
Λhp Ji

hp

T
(19)

Ji
hp

=
1

Hp(3, :) xi

[
Hp(3, :) xi 0 −Hp(1, :) xi
Hp(3, :) xi 0 −Hp(2, :) xi

]
⊗ xi

T (20)

Please refer to [7] for details on deriving Λy′i
. It can be

shown that the matrix R = [ r′1 . . . r′M ] formed by stack-
ing the algebraic transfer errors for the M point correspon-
dences, has the following statistics

E{RRT }=
M

∑
i=1

E{r′ir
′
i
T }= M

[
σ2

x 0
0 σ2

y

]
+

M

∑
i=1

Ji
hp

Λhp Ji
hp

T

= M
[

σ2
x 0

0 σ2
y

]
+

M

∑
i=1

[
σ

2
x Ji

hp
Λ

x
hp

Ji
hp

T
+σ

2
y Ji

hp
Λ

y
hp

Ji
hp

T
]

(21)

The left-hand-side of eq.(21) can be estimated directly from
the data. We find estimates σ̂2

x , σ̂2
y of the true noise vari-

ances σ2
x ,σ2

y , by solving the linear system of eq.(21), after

these substitutions : Ĵi
hp

, Λ̂x
hp

, Λ̂y
hp
→ Ji

hp
,Λx

hp
,Λy

hp
.

3.2.7 Refining the homography Ĥp

We now examine how knowledge of Λ̂hp could be used to
refine Ĥp. Suppose, S is the set of noisy correpondences
in the two views, and Shp is the subset with homography
ĤP. We refine Ĥp by using correspondences in S \Shp

9

that are consistent with Ĥp, while discarding inconsistent
correspondences in Shp . We declare the ith point corre-
spondence as consistent only when the Mahalanobis norm
of its algebraic transfer error given by dalg[i] is < 5.9915.

dalg[i] = ri
′T
([

σ̂x
2 0

0 σ̂y
2

]
+ Ĵhp Λ̂hp Ĵhp

T
)

ri
′ (22)

where σ̂x
2, σ̂y

2 are the estimated noise variances, and Ĵhp

is defined in eq.(20). The number 5.9915 specifies the
Probability(misclassi f ying an inconsistent correspondence)<

5%[7]. This follows from the fact that dalg[i] is a χ2
2 dis-

tributed random variable with 2 d.o.f. The proposed
thresholding scheme is based on the thresholding scheme
for sampson distances, utilized in estimating homographies
using RANSAC[7].

The success of the proposed inpainting scheme depends
on the ability to reliably estimate the epipolar geometry
from noisy correspondences. So we examine the effect of
noise on estimating the epipolar line constraint.

8 The gaussian assumption breaks down in the presence of outliers.
9The set difference A\B is defined as A\B = {x : x ∈ A & x /∈ B}



3.3. Epipolar Geometry
Given two views of a static scene, the epipolar

line constraint[7] describes a generic relationship be-
tween corresponding points10 in the two views. Sup-
pose x j = [x j,y j,1]T and x′j = [x′j,y

′
j,1]T are corresponding

points10 in views-1 & 2 respectively. They satisfy the epipo-
lar line constraint

x′j
T Fx j︸︷︷︸

l j2

= 0 , x j
T FT x′j︸ ︷︷ ︸

l j1

= 0 (23)

where F is a singular matrix depending on the relative
position and orientation of the cameras in the two views.
The matrix F is referred to as the fundamental matrix. The
epipolar line constraint derives its name from the fact that
it describes a point-line incidence relation11. The entities
l j1, l j2 are referred to as conjugate epipolar lines.

If x j is a missing pixel, its corresponding point in view-2 must
satisfy the epipolar line constraint of eq.(23). We exploit this
knowledge to inpaint the missing pixel x j.

3.3.1 Estimating the Fundamental matrix

Given a planar facet that induces a homography Hp between
the two views and the epipole12 e′ in view-2, the fundamen-
tal matrix F is specified as

F =
[
e′
]
x

Hp (24)

The epipole e′ is the intersection of all epipolar lines in
view-2. As mentioned before, if x j,x′j are corresponding
points in the two views, x′j lies on the line l j2 = Fx j. It can

be shown[7] that the point x̃ j
′ ∼ Hp x j

13, also lies on the

line l j2. This means that the line joining x′j and x̃′j is a frag-
ment of the epipolar line l j2. Given two such fragments we
can compute e′, and the full epipolar geometry follows from
eq.(24). The vector joining x̃ j

′ and x′j is referred to as the
parallax vector. Consequently, this approach to estimating
F is referred to as the plane+parallax method.

To reliably estimate the fundamental matrix using
the plane+parallax method, we need to identify atleast
two parallax vectors with little-or-no uncertainty in their
orientation. This is a challenging task given noisy point
correspondences in the two views. For short parallax
vectors (x′j & x̃′j are close), even small perturbations in the
end-points significantly alters the orientation of the parallax
vector. This suggests that the length of a parallax vector
could be used to determine its reliability. But, it is likely
that grossly mismatched correspondences are mistaken

10images of the same 3D world point in the two views
11(x j,y j) lies on line l j1 in view-1, and (x′j,y

′
j) lies on line lm2 in view-2

12The epipole e′ is the image of the 1st -pinhole as seen by camera-2.
13 x̃ j

′ represents the point x j transferred by the homography Hp

for reliable parallax vectors. So, we assume that grossly
mismatched correspondences have been removed prior to
inpainting. The sources of error affecting the orientation of
a parallax vector are

1. noise in the correspondence x j
′

2. noise in x̃ j
′ due to noise in the estimated homography Ĥp

We now examine how uncertainty in estimating Hp can be
combined with the length of a parallax vector, to identify
the two most reliable parallax vectors.

3.3.2 Reliability of parallax vectors

Given a noisy homography Ĥp, an estimate of its un-
certainty Λ̂hp , noise variances σ̂2

x , σ̂2
y , and a noisy point

correspondence { (x j,y j),(x′j + ε ′x j,y
′
j + ε ′y j)} that is in-

consistent14 with the homography, we can construct an

epipolar line segment by joining
(

Ĥp(1,:)x j

Ĥp(3,:)x j
,

Ĥp(2,:)x j

Ĥp(3,:)x j

)
and

(x′j + ε ′x j,y
′
j + ε ′y j). The length of this line segment is

d j =

∣∣∣∣∣
∣∣∣∣∣
[

x′j + ε ′x j
y′j + ε ′y j

]
− 1

Ĥp(3, :) x j

[
Ĥp(1, :) x j

Ĥp(2, :) x j

]∣∣∣∣∣
∣∣∣∣∣
2

= ||rj||2 (25)

It is easy to observe that d j is a random variable. Using the
noise model of Sec-3.2.2 and the covariance structure (Λyj ′ )
of y′j defined in eqs.(19) and (20), we can prove that

E
{

d j
}

= d̃ j + trace
([

σ2
x 0

0 σ2
y

])
+ trace

(
Λy′j

)
d̃ j =

∣∣∣∣∣
∣∣∣∣∣
[

x′j
y′j

]
− 1

Hp(3, :) x j

[
Hp(1, :) x j

Hp(2, :) x j

]∣∣∣∣∣
∣∣∣∣∣
2

(26)

where d̃ j is the true length of the epipolar line segment.
We define the reliability of a parallax vector as the ratio

d̃ j
−1

(σ2
x + σ2

y + trace(Λy′j
)). The ratio is minimum when

the noise is minimum and the length of the line segment is
maximum. Given 2 or more correspondences that are incon-
sistent with the homography Ĥp, we find the two parallax
vectors with the highest reliability in the sense of

d j
−1
(

σ̂x
2 + σ̂y

2 + trace(Ĵhp Λ̂hp Ĵhp

T
)
)

(27)

where d j is the observed length of the epipolar line seg-
ment, defined in eq.(25). The chosen parallax vectors are
intersected to find the epipole e′ in view-2. The full epipolar
geometry follows from eq.(24).

4. Putting it all together
Fig.(1) summarizes the process of inpainting in the pro-

posed approach. The user first selects images corresponding
to views-1 & 2. We then procced to identify putative corre-
spondences in the two views (colored dots in Figs1(a),1(d)).

14dalg[ j] > 5.9915, where dalg[ j] is defined in eq.(22)



Next, the user outlines a hypothetical plane R & the re-
gions to be inpainted {Ωk}, in view-1. The hypothetical
plane outlined in blue in Fig1(a), is any region that includes
correspondences from a planar facet. Using the set of cor-
respondences ∈R, we estimate a homography Ĥp, its asso-
ciated uncertainty Λ̂hp , and noise variances σ̂2

x , σ̂2
y . Using

the strategy of Sec-3.2.7, we refine the homography Ĥp until

the ratio σ̂x
2+σ̂y

2

#consistent correspondences is a minimum. The result of
the refinement is shown in Figs.1(a),1(d). The cyan points
in Figs.1(a),1(d) are consistent correspondences, while the
yellow & green points are the inconsistent correspondences
∈R& /∈R respectively. We use the refined homography Ĥp
to determine the two most reliable parallax vectors, as out-
lined in Sec-3.3.2. The best set of parallax vectors labeled
1 and 2 in Fig.1(d) are intersected to find the epipole e′ in
view-2. The full epipolar geometry follows from eq.(24).
If there is more than one planar facet in the scene, the best
inpainting is achieved for the planar facet that most directly
faces camera-2, as described in Sec-3.2.4.

4.1. Inpainting using the “epipolar line constraint”

From Sec-3.3, we know that if xm is a missing pixel
in view-1, its corresponding point in view-2 satisfies
the epipolar line constraint of eq.(23). Suppose lm1 =
[null(F)]x xm, and lm2 = Fxm are conjugate epipolar lines
in views-1 & 2, corresponding to xm. In principle, we could
inpaint xm by searching for the best matching patch along
the epipolar line lm2, in view-2. But this is time consuming,
computationally intensive, and not always correct. A sim-
pler alternative to inferring missing pixels is globally strech-
ing/shrinking lm2 until fragments of lm1&lm2 are aligned.

We repeat the steps outlined below for each pair
of conjugate epipolar lines {lm1, lm2}, in each region Ωk.

1. Identify landmarks on lm1 & lm2 as points
with the largest gradient magnitude along the epipolar
line (⇒ edge runs across the epipolar line)

2. Match the neighborhood around each landmark in
view-1 with every landmark in view-2, using LP-NCC

3. Find atleast 2 uniquely matching landmarks on lm1 & lm2
4. Rotate lm1 & lm2 around the respective epipoles
5. Find the 1-d affine transform Am that alings lm1 & lm2,

using the coordinates of the matching landmarks
6. Transform the points (xm,ym) ∈ (lm1∩Ωk) using

Am, to find points on lm2 with the missing intensities

Any error in identifying landmarks introduces errors in
the 1-d affine transform and hence the inpainting. Failure
to identify landmarks results in the inability to inpaint a
specific conjugate line pair.

Contrary to our assumption, conjugate epipolar lines can
be aligned using a locally affine transform. We are currently
investigating the use of elastic registration[13] techniques
to locally align a pair of conjugate epipolar lines.

5. Results
The effectiveness of the proposed approach is best

demonstrated in Fig.1, where we attempt to inpaint parts
of a pillar like structure. It is difficult to accurately estimate
the epipolar geometry in this example, as we have a limited
number of correspondences, and short parallax vectors. A
quick look at Fig.1(d) reveals that the proposed inpainting
scheme has succeeded in inpainting the pillar like structure.
The quality of the inpainting can be judged by the accu-
racy with which corners on the roof, and vertical structures
within the missing region have been reconstructed.

We provide two more examples of the proposed inpaint-
ing, wherein traditional image inpainting methods would
have failed. In the first example ( Figs.2(a)-2(d) ) we at-
tempt to recover the missing detail in the bookshelf, while
in the second example (Figs.2(e)-2(h)) we inpaint a lamp &
the window panes behind it. A quick look at Fig.2(a),2(h),
reveals that we have succesully recovered the missing detail
in the bookshelf of Fig.2(a), and inpainted the lamp & the
missing window panes in Fig.2(h). Notice that we succeed
in recovering the arch like structure on the window panes, in
Fig.2(h). But, a closer examination of Figs.2(d),2(h) reveals
that the some of the objects are scaled incorrectly. This is
a drawback of assuming that a pair of conjugate epipolar
lines can be aligned globally using a 1-d affine transform.

6. Conclusions
We extend the scope of image inpainting by using the

epipolar line constraint to infer the missing pixels from an
exemplar image. We overcome the difficulty in accurately
estimating the epipolar geometry from noisy point corre-
spondences, by using the proposed structure of uncertainty
in a homography and the proposed measure of the reliability
of a parallax vector.

The quality of the inpainting can be improved further, by
1. using elastic matching to align conjugate epipolar lines
2. non-linear refinement[7] of the estimated homography
3. using additional views to fully inpaint the occluding objects.

Appendix-1. Perturbation in DLT homography
Using first-order perturbation analysis[6] we can express the

perturbation in the DLT homography (δhp ) in terms of the unper-

turbed singular values & right singular vectors {σ j,vj}9
j=1 of Ap.

δhp =−
8

∑
j=1

(
vjvj

T

σ2
j

[
AT

p Nphp +NT
p Aphp

])
(A1)

We simplify eq.(A1) by noting that Aphp = 0, and
o AT

p = ∑
9
k=1 σkvkuk

T singular value decomposition of Ap
o vm

T vn = δ [m−n] orthogonality of right singular vectors

δhp =−

(
8

∑
j=1

vjuj
T

σ j

)
Nphp =−A†

p Nphp (A2)

where A†
p is the pseudoinverse [6] of the matrix Ap.

Using eq.(4) we can express the term Nphp as



(a). Epipolar Lines in view-1 (b). Epipolar Lines in view-2 (c). Inpainted view-1 (d). Ground Truth view-1

(e). Epipolar Lines in view-1 (f). Epipolar Lines in view-2 (g). Inpainted view-1 (h). Ground Truth view-1

Figure 2. Image Inpainting for an indoor scene (courtesy NRC-IIT VIT Group), and an outdoor scene (courtesy Oxford Univ. VGG)

Nphp =



{[
0 0 −ε

′
x1

0 0 −ε
′
y1

]
⊗ x1

T

}
vec(Hp

T )

. . .{[
0 0 −ε

′
xm

0 0 −ε
′
ym

]
⊗ xM

T

}
vec(Hp

T )

 (A3)

Using the property vec(A B C) = (CT ⊗A) vec(B), we find that

Nphp =


vec

x1
T HT

p

[
0 0 −ε

′
x1

0 0 −ε
′
y1

]T


. . . . . .

vec

xM
T HT

p

[
0 0 −ε

′
xM

0 0 −ε
′
yM

]T



= (W ⊗ I2) Ξ (A4)

W = diag([ Hp(3, :) x1 . . .Hp(3, :) xM ]) , Ξ = [ ε ′x1 ε ′y1 . . . ε ′xM ε ′yM ]T

Using eq.(A4) in eq.(A2), we can expres δhp in compact form as

δhp = Ap
† (W ⊗ I2)Ξ (A5)

The uncertainty in the DLT homography is estimated as

Λhp = E{δhp δhp
T }= Ap

† (W ⊗ I2)E{ΞΞ
T }(W T ⊗ I2)Ap

†T
(A6)

Using the noise model of 3.2.2, we can show that
E{ΞΞ

T }= IM ⊗diag( [ σ
2
x , σ

2
y ] ) (A7)

Substituting eq.(A7) in eq.(A6), and using the property
(A⊗B)(C⊗D) = (A B⊗C D), we obtain the expression for Λhp

(eq.(7)) in compact form.

Appendix-2. Uncertainty in Normalized DLT
From eq.(13), the perturbation in the normalized homography

is δhn
p
= An

p
† (W n⊗ I2)Ξn. The corresponding uncertainty Λhn

p
is

Λhn
p = E

{
δhn

p δhn
p

T
}

= An
p

† (W n ⊗ I2)E{Ξ
n
Ξ

nT }(W nT ⊗ I2) An
p

†T
(A8)

To model the statistics of the noise vector Ξn , we need to examine
the effect of normalizing the noise terms {(ε ′xi,ε

′
yi)}. From eq.(10),[

εn′
xi

εn′
yi

]
=
[

N2(1,1) N2(1,2)
N2(2,1) N2(2,2)

][
ε ′xi
ε ′yi

]
= N2S

[
ε ′xi
ε ′yi

]
(A9)

⇒ Ξ
n = [ εn′

x1 εn′
y1 . . . εn′

xM εn′
yM ]

T
= (IM ⊗N2S)Ξ (A10)

Using eqs.(A7,A10) in eq.(A8) and simplifying, we obtain the ex-
pression (eq.(14)) for Λn

hp
in compact form.
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