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Diversity Multiplexing Tradeoff in
MIMO Frequency Selective Channels with Partial CSIT

Yong Peng, Kaushik Josiam, and Dinesh Rajan, Senior Member, IEEE

Abstract— In this letter, we derive the optimal diversity-
multiplexing tradeoff for a frequency selective MIMO channel
with resolution-constrained channel feedback. The additional
degree of freedom provided by the channel multipaths is suc-
cinctly captured in the tradeoff characterization. For instance,
in a L-path SISO channel, with K-level feedback, the maximum
diversity increase is exponential in K.

Index Terms— Wideband, MIMO, power control, diversity.

I. INTRODUCTION

THE tradeoff between transmission data rate and error rate
in a multiple antenna system is elegantly characterized

by the diversity-multiplexing tradeoff (DMT) in [1]. Recently,
the optimal DMT with power and rate control using partial
channel state information at the transmitter (CSIT) in MIMO
flat fading channels is derived in [2], [3].

Wideband channels are typically frequency selective and the
transmit symbols experience multipath fading. The multiple
channel paths provide an additional degree of freedom which
can be exploited to improve both diversity gain (DG) and mul-
tiplexing gain (MG). This improvement has been characterized
using the optimal DMT with no CSIT in [4], [5]. In this letter,
we characterize the DMT of a MIMO wideband channel with
CSIT. This CSIT is obtained via an instantaneous, error-free,
bandwidth constrained feedback link. We evaluate the outage
probability using the analysis in [6] to convert the frequency
selective channel into a set of parallel fading channels. We first
modify the wideband channel into an equivalent set of parallel
fading channels using the approach in [6]. The optimal DMT
with partial CSIT is then immediate when the feedback, power
and rate control strategies derived in [2] are applied to the set
of parallel fading channels. The feedback is a deterministic
mapping of the channel to an integer index which is used
for power and rate control. Since our analysis closely follows
[2], we omit the proof for the main results and only indicate
relevant adaptations to the wideband channel. The DMT with
partial CSIT reveals an important insight: In a SISO wideband
channel with L multipaths, the K-index feedback increases
the maximum diversity by

∑K
k=1 Lk, which is an exponential

increase in K. In contrast is a SISO flat fading channel, the
maximum diversity only increases linearly with K [2].

II. SYSTEM MODEL

Consider a MIMO wideband block fading channel with
Nt transmit and Nr receive antennas. The wideband channel
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between the jth transmit and the ith receive antenna is a
vector ĥq

ij =
[
ĥq

ij(0), . . . , ĥq
ij(L − 1)

]
composed of L distinct

multipath components that are i.i.d. ∼ CN (0, 1). Let there be
T channel uses per fading block and η = min{Nt, Nr}.

Computing the channel mutual information is a key step in
deriving the DMT. Numerous approaches [7]–[9] have been
proposed to compute the mutual information for a wideband
channel. A popular approach is to use orthogonal frequency
division multiplexing (OFDM) to convert a wideband channel
into a set of parallel flat fading channels and then compute the
mutual information [6], [7]. We show in the following section
that OFDM is a simple and intuitive tool to fully capture the
additional DG provided by the L multipaths.

In an OFDM transmitter, data are processed in blocks
of length N and transformed by inverse discrete Fourier
transform (IDFT) to N subcarriers. The transformed block of
symbols is then lengthened to N +L symbols by repeating the
last L symbols at the beginning of the block as a cyclic prefix
(CP). At the receiver, the CP is removed, and the N symbols
are transformed back using a DFT. Such an approximation of
the wideband channel by N parallel channels is valid when
N → ∞ and L � N [7]. The received signal, Yq

n, of size
Nr × T at the nth subcarrier in the qth fading block is,

Yq
n = Hq

nXq
n + Zq

n, n = 0, 1, . . . , N − 1 (1)

where Xq
n is a Nt×T complex matrix of transmit symbols and

Hq
n is the Nr × Nt channel matrix after DFT with elements,

hq
n(i, j) =

∑L−1
l=0 ĥq

ij(l)e
− j2πln

N . Each element of the noise
matrix Zq

n is i.i.d. ∼ CN (0, 1). Superscript q for block index
is omitted in the sequel when it is clear from context.

The receiver is assumed to have perfect knowledge of the
channels in each subcarrier. Define H = {Hn}N−1

n=0 . The
feedback strategy which is similar to that in [2] is as follows:
For each channel realization, the receiver sends the transmit-
ter a noise free, instantaneous index I(H) ∈ {1, . . . ,K},
where positive integer K is the feedback resolution. The
feedback index is a deterministic mapping from a channel
matrix to an integer index and corresponds to one of K
partitions of the space of channel matrices. The transmitter
has K transmit codebooks {Ci = {Si(1), . . . ,Si(Mi)}}K

i=1

each with rate {Ri}K
i=1. Conditioned on the feedback index,

I(H) = i, the transmitter selects for transmission one of
the codewords (each is of size Nt × T ) at random from the
codebook, Ci. The average total transmit power, Pi, when
I(H) = i is given by Pi � 1

TMi

∑Mi

u=1 ‖Si(u)‖2
F where

‖ · ‖F denotes the Frobenius norm of a matrix. Additionally,
there is a long-term power constraint which is defined as
lim

Q→∞
1
Q

∑Q
q=1

1
T ‖Sq‖2

F
a.s.= EH[PI ] ≤ SNR. The average data
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rate R over infinite fading blocks is R
a.s.=

∑K
i=1 Pr(I(H) =

i)Ri. Consequently, the average MG, r = lim
SNR→∞

R
log SNR

.
The problem of finding optimal DMT with partial CSIT

is closely linked to finding an optimal feedback design for
wideband channels. Since we consider a slow fading channel,
our objective is to compute the smallest outage error proba-
bility with a K-index feedback. In particular we are interested
in the DG, d∗out,K(r) defined as the SNR exponent in the
high SNR approximation of the outage probability, when the
transmission rate is r log SNR. Note that throughout the letter,
.= indicates exponentially equality [1].

III. OPTIMAL DMT FOR WIDEBAND TRANSMISSION WITH

LIMITED FEEDBACK

A. Outage Analysis for Frequency Selective Channel

Assume data symbols on all subcarriers are independent and
the number of subcarriers N = mL, the mutual information
for the MIMO-OFDM system [6] when I(H) = i is given by

I(Xn;Yn|H, I(H) = i) =
N−1∑
n=0

log det
(
INr

+ PiHnHH
n

)

=
L−1∑
l=0

m−1∑
t=0

log det
(
INr

+ PiHlm+tHH
lm+t

)
. (2)

In deriving (2), the N subcarriers are split into m groups,
each of which has L subcarriers over uniformly spaced in-
dices. For large m, the subcarriers in a group are chosen
from indices sufficiently far apart, that the fading on these
subcarriers are uncorrelated and the gains due to frequency
diversity can be ensured. Grouping subcarriers in this fashion
when used in conjunction with a linear constellation pre-
coder can extract maximum multipath diversity in OFDM

systems [10]. Define I(Hl, π) =
L−1∑
l=0

log det(INr
+πHlHH

l ).

Outage occurs when the mutual information in (2) falls
below the desired instantaneous rate Ri = mri log SNR.
Define the outage probability for this modified system as

O(Ri, Pi) = Pr

[
m−1∑
t=0

I(Hlm+t, Pi) < mri log SNR
]

. For any

x > 0, log(1 + x) is a nonnegative function. Therefore,
{log(1+xt) < 1, ∀t = 0, . . . ,m−1} ⊆ {∑m−1

t=0 log(1+xt) <

m} ⊆ ⋃m−1
t=0 {log(1 + xt) < 1}. Hence, the outage can

be bounded as Pr [I(Hlm+t, Pi) < ri log SNR] ≤ Pout,K ≤
mPr [I(Hlm+t, Pi) < ri log SNR] , 0 ≤ t < m. Notice that the
upper and lower bounds of Pout,K are defined by the same
outage event. In the limit SNR → ∞, the outage probability
is,

O(Ri, Pi)
.= Pr [I(Hlm, Pi) < ri log SNR] . (3)

Thus, at high SNR, for any N , a set of appropriately chosen
L subcarriers are sufficient to capture the contribution of the
wideband channel to the outage event.

B. Optimal Tradeoff with Partial CSIT

We focus on the DMT for single-rate transmission, i.e.,
all K codebooks have the same rate R. The resolution-
constrained feedback is then utilized exclusively for trans-
mit power control, where users set their transmit power Pi,

depending on the feedback index I(H) = i. Then, from
(3), we see that the feedback I(H) and power codebook
{P ∗

i }K
i=1 completely determine system outage. The objective

is to find the optimum power codebook that minimizes system
outage subject to an average power constraint, SNR. The
optimum power codebook can be found as the solution to the
constrained optimization problem characterized in Lemma 1,
which is directly adapted from [2] for the wideband channel.

Lemma 1: For a given SNR and rate R, the outage minimiz-
ing power codebook {P ∗

i }K
i=1 solves the following optimiza-

tion problem

max
0<P1<···<PK

PK s.t. [O(R,PK)] + 1 −O(R,P1)]P1

+
K∑

i=2

[O(R,Pi−1) −O(R,Pi)]Pi ≤ SNR. (4)

The optimal index mapping is given by

I∗(H) =

{
1, if I(Hlm, P ∗

K) < R

min{i : i ∈ {1, . . . , K}, I(Hlm, P ∗
i ) ≥ R} else

.

Outage occurs only when even the maximum transmit power
in the codebook, P ∗

K , can not support the transmit rate, R. The
transmit power for the best and worst channel conditions are
mapped to the feedback index I∗(H) = 1, which suggests
that the transmitter must save power when the channel is bad
so that it may be used later [2]. Now, for any arbitrary power
level, π, the outage probability, O(R, π), in the limit SNR →
∞ is a generalization of the result in [4] and is described in
Lemma 2.

Lemma 2: For r ∈ (0, Lη), let π be a function of SNR
such that π

.= SNRp where p is a finite constant and p ≥ 1.
Let (x)+ = max(x, 0). Then O(r log SNR, π) .= SNR−D(r,p),
where

D(r, p) � inf
αli∈A′

L−1∑
l=0

η∑
i=1

(2i − 1 + |Nt − Nr|)αli, (5)

A′ = {αli ∈ R
Lη|αl1 ≥ · · · ≥ αlη ≥ 0,

∀l = 0, . . . , L − 1,
∑
l,i

(p − αli)+ < r}.

The minimizing α∗ can be explicitly computed using the
Laplace principle given in [1], as

α∗
li =

⎧⎪⎨
⎪⎩

p ∀l, i = 1, . . . , β − 1,

p − r/L + p �r/L� ∀l, i = β,

0 ∀l, i = β + 1, . . . , η.

where β = η − �r/pL�.
The optimal DMT for the wideband channel is a solution

to optimization problem (4). Using the index assignment in
Lemma 1 and the outage probability computation in Lemma 2,
the outage probability for the wideband channel is described
in the following theorem.

Theorem 1: For a single-rate MIMO wideband channel with
K quantization regions in the feedback, the outage upper
bound is given recursively by

d∗out,K = D(r, 1 + d∗out,K−1(r)) (6)
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where d∗out,0 � 0, ∀r and D(r, p) is defined in (5).
The proof of Theorem 1 is similar to Theorem 1 in [2]

and is therefore omitted. It is easy to show that the DMT is
asymptotically achievable when T → ∞ [1]. The achievability
with finite T is beyond the scope of this letter.

Theorem 1 extends directly to the case where the transmitter
adapts both the power and rate. As shown in [2], the DMT
with a K-index feedback is defined by a two rate codebook,
the desired rate, R = r log SNR, and a minimum rate, Rmin =
rmin log SNR, along with K power codebooks. The DMT for
this adaptive rate transmission is,

d∗out,K(r, rmin) = D(rmin, 1 + d∗out,K−1(r, rmin))

where d∗out,1(r, rmin) � D(r, 1), ∀r ∈ [rmin, Lη), and
rmin ∈ (0, Lη).

C. Special Cases

1) No CSIT, i.e., K=1: The optimal DMT is given by the
piecewise linear function

d∗out(r) = D(r, 1) = L (Nt − r/L) (Nr − r/L) . (7)

In particular, d∗max = LNtNr and r∗max = Lη. Further for
flat fading channels, i.e., L = 1, the optimal DMT simplifies
to d∗out = (Nt − r)(Nr − r) which concurs with [1].

2) Single antenna at one side, i.e., η = 1: The DMT is a
straight line between (0,

∑K
k=1(LNtNr)k) and (L, 0), i.e.,

d∗out,K(r) =
(
1 − r

L

) K∑
k=1

(LNtNr)k

=
(
1 − r

L

) LNtNr((LNtNr)K − 1)
LNtNr − 1

. (8)

Note that for a SISO case (Nt = Nr = 1), with L independent
multipaths, the maximal DG grows as

∑K
k=1 Lk. Therefore,

the value of the feedback is higher in a wideband system (L ≥
2) than a flat fading system.

3) Diversity gain for extreme values of r: For single-rate
transmission, we have

lim
r→0

d∗out,K(r) =
K∑

k=1

(LNtNr)k and lim
r→r∗

max

d∗out,K(r) = 0.

For adaptive-rate transmission when K ≥ 2, we have

lim
rmin→0

d∗out,K(r, rmin) = (LNtNr)K−1D(r, 1)+
K−1∑
k=1

(LNtNr)k

(9)
where D(r, 1) is given by (7). From (9), we can also
derive limrmin→0

r→rmin

d∗out,K(r, rmin) =
∑K

k=1(LNtNr)k and

limrmin→0
r→r∗

max

d∗out,K(r, rmin) =
∑K−1

k=1 (LNtNr)k. This result

shows that with adaptive-rate transmission when rmin is small,
even if we transmit at the maximum achievable rate in a SISO
wideband channel, we can still achieve diversity which grows
exponentially with K.

Fig. 1 shows the optimal DMT for single-rate and adaptive-
rate transmission (rmin = 0.001) for different number of
multipaths L and feedback resolution K. For a given K, as L
increases, both the maximum rate and diversity increase. In
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Fig. 1. Optimal DMT over a 2 × 2 channel.

contrast, for a fixed L, as K increases, only the maximum
diversity is increased. Also, the increase in maximum diversity
as K increases is greater for larger values of L. Further,
using adaptive rate transmission allows nonzero diversity to
be achieved even at the highest MG.

In this letter, the total power is split across all transmit
antennas and subcarriers. Future work should investigate the
effect of nonuniform power allocation on the D-M tradeoff.
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