Problem 1: A remarkable property of BST (10 points)
Professor R. E. Mark Cable thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key \(k \) in a binary search tree ends up in a leaf. Consider three sets: \(A \), the keys to the left of the search path; \(B \), the keys on the search path; and \(C \), the keys to the right of the search path. Professor R. E. Mark Cable claims that any three keys \(a \in A, b \in B, \) and \(c \in C \) must satisfy \(a \leq b \leq c \). Give a smallest possible counter example to the professor’s claim.

Problem 2: Height and average depth (30 points)
Consider a randomly built binary search tree, i.e. distinct keys are inserted into an initially empty binary search tree in random order. It is a fact that a randomly built binary search tree on \(n \) nodes has an expected height \(\Theta(\log n) \). In class we argued this fact by drawing a similarity to the recursive tree of Randomized Quicksort (see your notes).

A common mistake is to claim the above by showing that the expected average depth in the binary search tree is \(\Theta(\log n) \), where the average depth is given by \(\frac{\sum_{i=1}^{n} \text{depth}(x_i)}{n} \), because that’s easier to prove.

This problem is designed to expose this common mistake.

Let \(P(n) = \sum_{i=1}^{n} \text{depth}(x_i) \) for a binary search tree on \(n \) nodes. Therefore, the average depth in the binary search tree is \(\frac{P(n)}{n} \).

(a) (5 points) Show that \(P(n) \) obeys the following recurrence for a complete binary search tree:

\[
P(n) = 2P(n/2) + \Theta(n)
\]

and conclude that the average depth in a complete binary search tree is \(\Theta(\log n) \) by solving for \(P(n) \).

Consider the following binary search tree consisting of a complete binary tree with a long tail.

(b) (5 points) What is the height of the above binary search tree in \(\Theta \) notation?

(c) (5 points) Show that \(P(n = n_1 + n_2) = \Theta(n_1 \log n_1 + n_2 \log n_1 + n_2^2) \) for the above binary search tree and conclude that the average depth in the above binary search tree is \(\Theta(\log n_1 + \frac{n_2^2}{n_1 + n_2}) \).
(d) (10 points) Find a relation between \(n_1 \) and \(n_2 \) to make the average depth in the above binary search tree \(\Theta(\log n) \) but its height \(\neq \Theta(\log n) \). What is that height in \(\Theta \) notation?

(e) (5 points) How can you intuitively explain the fact that a bound on the average depth in a tree does not imply the same bound on the height of the tree?

Problem 3: Tree walks (30 points)

(a) (10 points) Write recursive pseudocodes similar to the INORDER-TREE-WALK we discussed in class for PREORDER-TREE-WALK and POSTORDER-TREE-WALK (see book page 254 for definitions).

(b) (10 points) Assume the INORDER-TREE-WALK outputs g,b,e,d,f,a,c,j,k,h,i and the POSTORDER-TREE-WALK outputs g,e,b,f,a,j,k,i,h,c,d. Construct the tree and determine the output of the PREORDER-TREE-WALK.

(c) (10 points) Consider a set \(S \) of distinct bit strings, i.e. string over the alphabet \{0, 1\}. A special tree, called radix tree, can represent such a set \(S \). Here’s the radix tree for \(S = \{1011, 10, 011, 100, 0\} \). Given a set of distinct binary strings whose length sum is \(n \), show how you can build its radix tree in \(\Theta(n) \) time and then use it to sort \(S \) lexicographically (dictionary order) in \(\Theta(n) \) time. For example, the output of the sort for the radix tree above should be: 0, 011, 10, 100, 1011.

Hint: use one of the tree walks.

Problem 4: Binary search tree and Min-Heap (20 points)

(a) (10 points) Design an algorithm that converts a binary search tree on \(n \) elements into a Min-Heap containing the same elements in \(\Theta(n) \) time.

(b) (10 points) Very Challenging (EXTRA CREDIT): Do the same thing *inplace*, i.e. convert the tree into a Min-Heap in \(\Theta(n) \) time without using any extra storage. We adopt the standard representation of a tree with the three *left*, *right*, and *parent* pointers.

(b) (10 points) Can you do the reverse process, i.e. convert a Min-Heap containing \(n \) elements into a binary search tree on the same elements in \(\Theta(n) \) time? How? or Why not?