Computational Biology

Lecture 10
Hidden Markov Model

A Hidden Markov Model HMM is defined as:

- A set of *hidden* states
- [transitional probabilities]
 For each pair of states i and j, a transition probability a_{ij}.
- $\sum_j a_{ij} = 1$

- An alphabet of symbols Σ
- [emission probabilities]
 For each state k, and symbol b
 $e_k(b) = p(x_i = b \mid \pi_i = k)$
 [now we use variable π for states and variable x for symbols]
- $\sum_{b \in \Sigma} e_k(b) = 1$ for each state k

Markov property:

$p(\pi_n = j \mid x_0 \ldots x_m, \pi_0 \ldots \pi_{m-1}, \pi_m = i) =$
$p(\pi_n = j \mid \pi_m = i)$ $m < n$
if $m = n - 1$, then this is a_{ij}
HMM for CpG islands
Questions with HMMs

• **Evaluation**: given x, what is the probability $p(x)$ that it was produced by the model?

• **Decoding**: given x, what is the most probable path that produces x in the model?

• **Learning**: given x, what are the parameters (transitional probabilities and emission probabilities) of the model that maximize $p(x)$.

Saad Mneimneh
http:// engr.smu.edu/~saad/
Viterbi *decoding* algorithm

- **Initialization**
 \[\nu_0(0) = 1, \nu_k(0) = 0 \text{ for } k > 0 \]

- **Main iteration**
 for \(i = 1 \ldots n \)
 \[\nu_i(i) = e_i(x_i) \cdot \max_k (\nu_k(i - 1) \cdot a_{kl}) \]
 \[\text{ptr}_i(i) = \arg\max_k (\nu_k(i - 1) a_{kl}) \]

- **Termination**
 \[\rho(x, \pi^*) = \max_k (\nu_k(n) a_{k0}) \]

Time = \(O(k^2n) \)
Space = \(O(kn) \)
Computing $p(x)$

- Before, $p(x) = a_{sx1} \prod_{i=2}^{n} a_{x_{i-1} x_i}$

- Now, $p(x) = \Sigma_{\pi} p(x, \pi)$

- Enumerating all π is exponential!

- Use Viterbi, same as before, but change max to Σ
Forward evaluation algorithm

- Let $f_j(i) = p(x_1 \ldots x_i, \pi_j = l)$

- Then,

 $$f_j(i) = e_j(x_i) \sum_k f_k(i - 1) a_{kl}$$

\[\text{All possible states}\]

$\pi_i = l$ with prob. $e_j(x_i)$
Derivation

\[f_i(i) \]
\[= \sum_{\pi_1 \ldots \pi_{i-1}} p(x_1 \ldots x_i, \pi_1 \ldots \pi_{i-1}, \pi_i = l) \]
\[= \sum_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i = l, x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \sum_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i = l | x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \sum_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i = l | \pi_{i-1}) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \sum_{\pi_1 \ldots \pi_{i-2}, k} p(x_i, \pi_i = l | \pi_{i-1} = k) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \sum_{\pi_1 \ldots \pi_{i-2}, k} e(x_i) a_{kl} \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \sum_k \sum_{\pi_1 \ldots \pi_{i-2}} e(x_i) a_{kl} \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \sum_k \sum_{\pi_1 \ldots \pi_{i-2}} p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \cdot e(x_i) a_{kl} \]
\[= \sum_k f_k(i-1) e(x_i) a_{kl} = e(x_i) \cdot \sum_k f_k(i-1) a_{kl} \]
Forward evaluation algorithm

• Initialization
 \[f_0(0) = 1, \quad f_k(0) = 0 \text{ for } k > 0 \]

• Main iteration
 for \(i = 1 \ldots n \)
 \[f_i(i) = e_i(x_i) \cdot \sum_k (f_k(i - 1) \cdot a_{k|i}) \]

• Termination
 \[p(x) = \sum_k f_k(n) a_{k|0} \]
Problem of small numbers

• In Viterbi and Forward algorithm we multiply probabilities \rightarrow numbers will soon be very small and we loose precision.

• Use log space \rightarrow addition instead of multiplication.
Log space Viterbi

\[v_j(i) = e_j(x_i) \cdot \max_k (v_k(i - 1) \cdot a_{ki}) \]

Let \(V_j(i) = \log v_j(i) \)

\[
V_j(i) = \log [e_j(x_i) \cdot \max_k (v_k(i - 1) \cdot a_{ki})] \\
= \log e_j(x_i) + \log [\max_k (v_k(i - 1) \cdot a_{ki})] \\
= \log e_j(x_i) + \max_k \log [(v_k(i - 1) \cdot a_{ki})] \\
= \log e_j(x_i) + \max_k (V_k(i - 1) + \log a_{ki})
\]
Log space Forward

\[f_i(i) = e_i(x_i) \cdot \Sigma_k (f_k(i - 1) \cdot a_{kl}) \]

Let \(F_i(i) = \log f_i(i) \)

\[F_i(i) = \log [e_i(x_i) \cdot \Sigma_k (f_k(i - 1) \cdot a_{kl})] \]
\[= \log e_i(x_i) + \log \Sigma_k (f_k(i - 1) \cdot a_{kl}) \]
\[= \log e_i(x_i) + \Sigma_k \log [(f_k(i - 1) \cdot a_{kl})] \]
\[= \log e_i(x_i) + \log \Sigma_k e^{(F_k(i - 1) + \log a_{kl})} \]
Back to the most probable path

- The Viterbi algorithm finds it!
- The most probable path might not be the most appropriate basis for judgment.
- We might want, for instance, the most probable state for an observation \(x_i \).
- More generally, we are interested in \(p(\pi_i = k \mid x) \)
Computing $p(\pi_i = k \mid x)$

- $p(\pi_i = k \mid x) = p(x, \pi_i = k)/p(x)$

- I know how to compute $p(x)$: forward alg.

- $p(x, \pi_i = k)$

 $= p(x_1 \ldots x_i, \pi_i = k).p(x_{i+1} \ldots x_n \mid x_1 \ldots x_i, \pi_i = k)$

 $= p(x_1 \ldots x_i, \pi_i = k).p(x_{i+1} \ldots x_n \mid \pi_i = k)$

 $= f_k(i).b_k(i)$
Backward *evaluation* algorithm

- **Initialization**
 \[b_k(n) = a_{k0} \text{ for all } k \]

- **Main iteration**
 for \(i = n - 1 \ldots 1 \)
 \[b_k(i) = \sum_j a_{kj} e_j(x_{i+1}) b_j(i+1) \]

- **Termination**
 \[p(x) = \sum_k a_{0k} e_k(x_1) b_k(1) \]

Time = \(O(k^2 n) \)
Space = \(O(kn) \)
Learning (training the HMM)

• Let θ be the parameters of the HMM (transition probabilities and emission probabilities, the a’s and e’s)

• Given independent sequences x^1, \ldots, x^n, we would like to find θ that will maximize:

$$\log p(x^1 \ldots x^n \mid \theta) = \sum_{j=1}^n \log p(x^j \mid \theta)$$

This is called the maximum likelihood parameters.
State sequence is known

• Assume the path for each x^i is known
 – For instance, we have sequences in which CpG islands are already labeled

• Paths are known, let
 – $A_{kl} =$ number of transitions from k to l
 – $E_k(b) =$ number of times b emitted in state k

• The maximum likelihood parameters are given by:
 – $a_{kl} = A_{kl} / \Sigma_l A_{kl}$
 – $e_k(b) = E_k(b) / \Sigma_b E_k(b)$
Maximum likelihood from counts

• Assume we have a sequence of independent observations \(x_1\ldots x_n\) and that we count \(n_i\) occurrences of outcome \(i, i=1\ldots k\).

• Let \(\theta_i = \text{probability of } i\).

• Then \(\theta^{\text{ML}} = \{\theta_i=n/n, i=1\ldots k\}\) is the maximum likelihood solution for \(\theta\).

• Consider any other \(\theta\). We want to show that
 \[
 p(x \mid \theta^{\text{ML}}) > p(x \mid \theta)
 \]
Proof

\[
\log \frac{p(x | \theta^{ML})}{p(x | \theta)} = \log \frac{\prod_i (\theta_i^{ML})^{n_i}}{\prod_i \theta_i^{n_i}} \\
= \sum_i n_i \log \frac{\theta_i^{ML}}{\theta_i} \\
= n \sum_i \theta_i^{ML} \log \frac{\theta_i^{ML}}{\theta_i} > 0
\]

The last summation is the relative entropy of \(\theta^{ML}\) and \(\theta\) which is always positive and 0 iff \(\theta^{ML} = \theta\) (from information theory)
Some problems

• Maximum likelihood are vulnerable to overfitting if insufficient data.

• For instance, if a state k was never used in the set of training sequences, then
 – $a_{kl} = 0$ for all l
 – $e_k(b) = 0$ for all b

• To avoid such problem, start with pseudocounts of r_{kl} for A_{kl} and $r_k(b)$ for $E_k(b)$.

• Large pseudocount indicates strong prior belief about the probabilities (will require more data to modify)

• Small pseudocount just to avoid zero probability
Example

Dishonest Casino HMM

\[r_{0F} = r_{0L} = r_{F0} = r_{L0} = 1; \quad [\text{avoid zero probability}] \]
\[r_{FL} = r_{LF} = r_{FF} = r_{LL} = 1; \quad [\text{avoid zero probability}] \]

\[r_F(1) = r_F(2) = \ldots = r_F(6) = 20 \quad [\text{strong belief that fair is fair}] \]

\[r_L(1) = r_L(2) = \ldots = r_L(6) = 5 \quad [\text{wait and see for loaded}] \]
New species comes in...

- New species with different distribution of CpG islands.
- We do not have labeled genomic sequences for the new species.
- Need to find maximum likelihood θ of HMM without knowing the paths!
Baum–Welsh algorithm

start at iteration 0 with some \(\theta \), call it \(\theta^0 \)
\(L^0 \leftarrow \log p(x^1 \ldots x^n \mid \theta^0) \)
\(i \leftarrow 0 \)

repeat
 \(i \leftarrow i + 1 \)
 \(A_{kl}^i \leftarrow E \left[A_{kl} \mid x^1 \ldots x^n, \theta^{i-1} \right] \) (expected value)
 \(E_{k}(b)^i \leftarrow E \left[E_k(b) \mid x^1 \ldots x^n, \theta^{i-1} \right] \) (expected value)

 calculate \(\theta^i \) using maximum likelihood estimators from counts \(A_{kl}^i \) and \(E_{k}(b)^i \) as before.

 \(L^i \leftarrow \log p(x^1 \ldots x^n \mid \theta^i) \) (new likelihood)

until \(L^i - L^{i-1} < \text{threshold} \)
What is the guarantee?

• Baum–Welsh algorithm is a special case of a general algorithm known as Expectation Maximization (EM)

• EM guarantees that \(p(X | \theta^{i+1}) \geq p(X | \theta^i) \)

• It will therefore converge to a local maximum (not necessarily the maximum)
We need to...

Compute:

- $\mathbb{E} [A_{kl} \mid x^1 \ldots x^n, \theta]$

- $\mathbb{E} [E_k(b) \mid x^1 \ldots x^n, \theta]$
\[\mathbb{E} \left[A_{kl} \mid x^1 \ldots x^n, \theta \right] \]

By linearity of expectation:
\[\mathbb{E} \left[A_{kl} \mid x^1 \ldots x^n, \theta \right] = \sum_j \mathbb{E} \left[A_{kl} \mid x^j, \theta \right] \]

By linearity of expectation, again:
\[\mathbb{E} \left[A_{kl} \mid x^j, \theta \right] = \sum_i \mathbb{E}[^\# \text{ of } k \rightarrow l \text{ at } x^j_i \mid x^j, \theta] \]
\[= \sum_i p(k \rightarrow l \text{ at } x^j_i \mid x^j, \theta) \]

\[p(k \rightarrow l \text{ at } x^j_i \mid x^j, \theta) = p(\pi_i = k, \pi_{i+1} = l \mid x^j, \theta) \]

\[p(\pi_i = k, \pi_{i+1} = l \mid x^j, \theta) = p(\pi_i = k, \pi_{i+1} = l, x^j_i / \theta) / p(x^j_i / \theta) \]
\[= f_k^j(i) a_{kl} e_i(x_{i+1}) b_{j(i+1)} / p(x^j_i / \theta) \]
We get:

\[E[A_{kl} \mid x^1 \ldots x^j, \theta] = \sum_j \frac{1}{p(x^j \mid \theta)} \sum_i f_k^j(i) a_{kl} e_l(x_{i+1}^j) b_l^j(i + 1) \]

\[E[E_k(b) \mid x^1 \ldots x^j, \theta] = \sum_j \frac{1}{p(x^j \mid \theta)} \sum_{i|x_i^j = b} f_k^j(i) b_k^j(i) \]
Viterbi training

start at iteration 0 with some θ, call it θ^0

$i \leftarrow 0$

repeat

$i \leftarrow i + 1$

$A_{kl}^i \leftarrow$ number of transitions $k \rightarrow l$ on the most probable paths π^1^*, \ldots, π^j^*

$E_k(b)^i \leftarrow$ number of times k emits b on the most probable paths π^1^*, \ldots, π^j^*

calculate θ^i using maximum likelihood estimators from counts A_{kl}^i and $E_k(b)^i$ as before.

until none of the optimal paths change
What is the guarantee

• It will converge

• It will not necessarily maximize the true likelihood $p(x_1...x^n | \theta)$, but $p(x_1...x^n | \theta, \pi_1^*, ..., \pi_j^*)$

• Usually performs less well than Baum–Welsh

• Practical, don’t have to perform Forward and Backward algorithms, only Viterbi!

• Makes sense if we are using only Viterbi decoding