Lecture 19
Chaining local alignments

- Having found many maximal matches (local alignments) between x and y with different lengths, we would like to chain them together to maximize the sum of lengths.

- Each match x_{a}, …, x_{b} and y_{c}, …, y_{d} can be represented as a square in two dimensions.

- Two squares can be chained if the top left corner of one is below and to the right of the bottom right corner of the other.
Generalizing

• We have rectangles, each with a weight w

• Two rectangles i and j can be in the same chain if the bottom left corner of j is above and to the right of the top right corner of i, we say j follows i in the chain

• We would like to find a chain with maximum weight
Simple solution

- Construct a directed acyclic graph G:
 - one vertex for each rectangle
 - a directed edge from vertex i to vertex j iff rectangle j can follow rectangle i in some chain

- Let $v(i)$ be the maximum weight of a chain that ends in rectangle i.

Algorithm:

$v(j) \leftarrow w(j)$ for all vertices j

topologically sort G (if i before j, there is no edge (j, i), i.e. i cannot follow j in a chain)

updating $v(i)$ can only affect $v(j)$ for $j > i$

for all vertices j in order

 $v(j) \leftarrow w(j) + \max v(i)$ where edge $e = (i, j)$ exists

the rectangle i with max $v(i)$ is the end of the optimal chain and we can trace back by keeping pointers
Example

\[
\begin{align*}
\nu(1) &= 3 \\
\nu(2) &= 5 \\
\nu(5) &= 2 \\
\nu(7) &= 4 \\
\nu(8) &= 11 \\
\nu(3) &= 10 \\
\nu(4) &= 8 \\
\nu(6) &= 13 \\
\nu(9) &= 15
\end{align*}
\]
Running time

- Topological sort can be done in linear time in the number of vertices and edges of \(G \); therefore in \(O(n^2) \), where \(n \) is the number of rectangles.

- Updating \(v(i) \) for all \(i \) takes \(O(n^2) \) time as well.

- We would like a better time bound like \(O(n \log n) \).

- The bound \(O(n \log n) \) can be achieved.

- We will consider an \(O(n \log n) \) time algorithm for the one dimensional problem (rectangles become segments on the x line) and then generalize it for two dimensions.
One dimension

- We have \(n \) segments
- Let \(I \) be the list of all \(2n \) left and right end points

\[
\begin{align*}
\text{sort } I \\
V &\leftarrow 0 \\
\text{for } i = 1 \text{ to } 2n \\
&\quad \text{if } [i] \text{ is left of segment } j, \text{ set } v(j) \text{ to } w(j) + V \\
&\quad \text{[entering } j \text{]} \\
&\quad \text{if } [i] \text{ is right of segment } j, \text{ set } V \text{ to } \max(v(j), V) \\
&\quad \text{[exiting } j \text{]}
\end{align*}
\]

- The value of \(V \) at the end is the weight of the optimal chain
- The chain itself can be obtained by the now familiar back tracking strategy
Correctness and time

• When entering a segment j, j has a potential to participate in the chain and contribute a $w(j)$ to the max weight computed so far to make it

\[v(j) = V + w(j) \]

• When leaving segment j, $v(j)$ is used as the maximum weight unless a better maximum V has been found before exiting j

• The running time is $O(n\log n)$ dominated by the sorting operation
Two dimensions

- We will generalize the approach for the one dimension

- Let l be the list of the left and right end points of the rectangles (x coordinates)

- The chaining algorithm processes the entries in l in order (left to right) as in the one dimension case

- But the algorithm must also consider the y coordinates of each rectangle
Idea

- As we go through I, we keep a list L of some rectangles that are possible ends for the current chain.

- Let l_j be the low y coordinate of rectangle j and h_j be the high y coordinate of rectangle j.

- Each rectangle in L will be represented as a triple $(h_j, v(j), j)$ where:
 - h_j: high y coordinate of rectangle j.
 - $v(j)$: maximum weight of a chain that ends in rectangle j.
 - j: the rectangle.
Entering a rectangle

- When we enter a rectangle k, k has a potential to contribute $w(k)$ to the weight of the chain.

- Rectangle k has to be chained to one of the rectangles in L to extend the chain.

- We look for the rectangle j in L that is closest to k (in the y dimension) with $h_j < l_k$.

- We set $v(k) = w(k) + v(j)$.

- Is $v(k)$ computed as above the maximum weight of a chain ending in rectangle k? Let’s see…
Computing $v(k)$

If k can follow j, then k can follow i

Therefore we need to make sure that if $v(i) \geq v(j)$ and $h_j \geq h_i$, rectangle j is not in the list L
Restrictive rectangle

If
- \(v(i) \geq v(j) \) and
- \(h_j \geq h_i \)

then we say that rectangle \(j \) is more restrictive than rectangle \(i \)

If
- \(i \in L \) and
- \(j \) is more restrictive than \(i \)

then \(j \notin L \)
But what if...

j is more restrictive than i

$v(k) = w(k) + v(j)$

but here k cannot follow i and j should be used!

make sure i is inserted in L only when we exit i
Exiting a rectangle

• When we exit a rectangle k, we insert it in L only if k is not more restrictive than some $j \in L$

• Moreover, after we insert k, we delete from L all j that are more restrictive than k

• Therefore, L satisfies the following:

$$\text{If } h_i < h_j \iff v(i) < v(j)$$
Therefore…

The value of $v(k)$ is computed correctly as

$$v(k) = w(k) + v(j)$$

where $j \in L$ is closest to k with $h_j < l_k$ because:

- j is not more restrictive than any $i \in L$
- k can follow j because $j \in L$ means that j ends before k starts
- all j that end before k starts where considered for L
Algorithm

$L \leftarrow \phi$
for $i = 1$ to $2n$
begin

if $l[i]$ is left of rectangle k [entering k]
then find highest $h_j < l_k$ in L
 $v(k) = w(k) + v(j)$

if $l[i]$ is right of rectangle k [exiting k]
then find highest $h_j \leq h_k$ in L
 if $v(k) > v(j)$
 then insert k in L
 delete all entries j from L with $h_j \geq h_k$ and $v(j) \leq v(k)$

end

The maximum $v(j)$ in L is the value of the maximum weight chain
The chain can be obtained by a back tracing strategy
Analysis

- Sorting l takes $O(n \log n)$ time
- Keep L as a balanced binary search tree sorted by h_j, e.g. AVL tree
- **Searching L:**
 - Either for highest $h_j < l_k$ or for highest $h_j \leq h_k$ takes $O(\log n)$ time
 - The total time of search is $O(n \log n)$
- **Inserting in L:**
 - Insertion operation takes $O(\log n)$ time
 - The time needed for all insertions is $O(n \log n)$
Analysis (cont.)

• Deleting from L:

 – All entries to be deleted start just after $(h_k, v(k), k)$ and are successive because L is sorted by increasing order of $v(j)$

 – Therefore, successively examine L starting after $(h_k, v(k), k)$ until the first $(h_j, v(j), j)$ with $v(j) > v(k)$ is found

 – Successor operation takes $O(\log n)$ time

 – Deletion operation takes $O(\log n)$ time

 – The total time needed for all deletions is $O(n \log n)$