Lecture 7
Database Search

• Quadratic complexity not suitable for searching large databases
 – e.g. need to compare a query sequence to all sequences in a large database.
 – Alternative: Heuristics
 • BLAST
 • FAST

• Simple scoring scheme such as (+1, -1, -2) is not suitable for comparing protein sequences.
 – e.g. amino acids of similar size are more likely to get substituted for one another.
 – Alternative: Substitution matrix, $S(a,b) = \text{score for aligning } a \text{ with } b$
 • General approach for substitution matrices
 • PAM
 • BLOSUM
BLAST
(Basic Local Alignment Search Tool)

• BLAST returns a list of high scoring segment pairs between the query sequence and sequences in the database.

• A segment is a substring of a sequence.

• A segment pair is a pair of segments of the same length \(\rightarrow \) can from a gapless alignment.

• Basic BLAST is ungapped.

• Given a query sequence, BLAST returns all segment pairs between the query and a database sequence with score above a threshold \(S \).

• \(S \) can be set by the user.
HOW does BLAST work?

- It finds certain “seeds” which are very short segment pairs between the query and the database sequence.

- These seeds are then extended in both directions without gaps, until the maximum possible score for extensions is reached.

- Time reduction: the extension stops when the score falls below a carefully computed limit X.
BLAST Algorithm

• For a given query sequence, compile a list of short high scoring strings (words in BLAST jargon)

• Search for hits – each hit gives a “seed”

• Extend “seeds”

• Return segments pairs with score > S.
k-mers

- How is the list of short high scoring strings obtained?

- **k-mers**: substrings of length \(k \).
 - DNA sequence: all \(k \)-mers.

 - Protein sequence: all \(k \)-mers in addition to neighboring \(k \)-mers. A neighboring \(k \)-mer is a \(k \) length string that scores high with some \(k \)-mer of the sequence.

- **Typical \(k \): 3 or 4**
Database

• The database is hashed and indexed by all words of size k.

• Each word will point to the locations where it exists in the database.

• We have only 4^k words in case of DNA sequences and 20^k words in case of proteins.

• This is much less than the number of sequences stored in the database.
Overview

$k = 3$

high scoring neighbors of PQG

DataBase

seed

GSVEDTTGSQSLAALLNKCKTPOQQRVLVIRQWKQPLOMDKNGIEERLNLVEAFVEDAELRQLQEDL

Saad Mneimneh
http://engr.smu.edu/~saad/
BLAST algorithm

- Split query into overlapping words of length k (k-mers).

- For each word, find neighboring words that score at least T.

- Look into database where these words occur: seeds

- Extend each seed until score drops below X.

- If it scores $> S$, return segment pair.
Generating neighbors

- For every amino acid in the word, try all possibilities
- Score the words
- Keep those with within threshold
Looking in database

- Each neighboring word gives a list of locations where it’s found
- Follow pointers to obtain seeds
Extending seeds

- Extend seed until score drops below X.
- Return highest scoring segment pair.
Why k-mers make sense?

- If two sequences have some level of similarity (say $L\%$), they must contain a preserved k-mer for some k.

- Why?

- smurfhole principle!
Example smurfhole

• If we have 91 smurfs and 10 holes, there must be at least one hole with at least 10 smurfs.

• Proof: if non of the holes contain 10 smurfs, we have at most 9 x 10 = 90 smurfs!
Application to \(k \)-mers

- Two sequences of length 100 with > 90% similarity.

- There must be a preserved 10-mer.

Where will the 91st go?
Random model

• In the previous model, we cannot guarantee a k-mer for $k > 10$.

• What happens if we distribute the 91 similarities randomly?

• We get even better chance of having k-mers for other ks.
Running time

- n: length of query sequence
- s: number of seeds
- L: length of alignment

- Running time $= O(n + Ls)$

- For one sequence in the database,
 $s = O(n), L = O(n) \Rightarrow O(n^2)$

 But in practice faster than Smith-Waterman.
Variations

• 2-hit BLAST
 – Require two seeds that are within 40 amino acids of each other to start considering a database sequence.
 – Reduce the space of potential hits, speeding up the algorithm.

• Gapped BLAST
 – BLAST with gaps, find a seed, then find more seeds and extend them, then join segments with gaps in a band around the main seed.
FAST

- Record all occurrences of windows of certain size k in the two sequences x and y (1-2 for DNA, 3-4 for proteins).

- If a window occurs at x_i and at y_j, we say it occurs at an offset $i - j$.

- Offset range is 1 – n to m – 1.
Example

- Window of size 2

- \(x = \text{AGAGAG} \)
- \(y = \text{AAGAGAG} \)

- The window AG occurs at \(x_1 \) and \(y_4 \), so it occurs at offset \(1 - 4 = -3 \). It also occurs at other offsets.

- What does it mean? Aligning \(x \) and \(y \) at offset -3 aligns the window AG.

 \[
 \begin{array}{c}
 \text{AGAGAG} \\
 \text{AAGAGAG}
 \end{array}
 \]

- What is the offset that maximizes the number of aligned windows?
FAST algorithm

• Need
 – lookup table: contains all possible windows of size k, e.g. 4^k and their occurrence in x and y.
 – Offset vector: for each offsets, holds how many times that offset occurred.

• Fill the lookup table

• Compute the offset vector

• Choose the most frequent offset

• Align x and y at that offset
Example

- $x = \text{AGAGAG}$
- $y = \text{AAGAGAG}$

<table>
<thead>
<tr>
<th></th>
<th>$x: 1, 3, 5$</th>
<th>$y: 2, 4, 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td></td>
<td>$y: 1$</td>
</tr>
<tr>
<td>AG</td>
<td>$x: 2, 4$</td>
<td>$y: 3, 5$</td>
</tr>
<tr>
<td>GA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AGAGAG
AAGAGAG
Variation

Run a bounded dynamic programming in a band centered at the offset diagonal.

AAGAGAGAG

basic FAST alignment obtained
Substitution matrices

Need mainly two things:

– For every pair \(a, b\): \(p_{ab}\), the probability of observing \(a\) aligned with \(b\). \(p_{ab} = p_{ba}\)

– For every \(a\): \(p_a\), the probability of observing an \(a\).
Aligned sequences
Related / Unrelated

• Let M be the model in which x and y are related and obtained according to the joint probabilities p_{ab}.

• Let R be the model in which x and y are unrelated and obtained independently at random according to the individual probabilities p_a.
The score of a x and y is the relative likelihood that the sequences are related compared to being unrelated: *odds ratio*

\[
score(x, y) = \frac{p(x, y | M)}{p(x, y | R)} = \prod_i \frac{p_{x_i y_i}}{p_{x_i} p_{y_i}}
\]
Intuition

\[x = \ldots \ldots a \ldots \ldots \]
\[y = \ldots \ldots b \ldots \ldots \]

Let \(p[a \rightarrow b] = \) probability that \(a \) mutates into \(b \) (\(\neq p[b \rightarrow a] \))

Taking the point of view of \(a \), the probability that \(b \) is there is \(p[a \rightarrow b] \).

But there is a chance of \(p_b \) for a random occurrence of \(b \).

This ratio is: \[\frac{p[a \rightarrow b]}{p_b} \]

But \(p_{ab} = p_a \cdot p[a \rightarrow b] \), therefore we get \[\frac{p_{ab}}{p_a p_b} \]
Additive score

• The score is multiplicative
 \[\prod_i \frac{p_{x_i y_i}}{p_x p_y} \]

• To make it additive, take the log
 \[\log \prod_i \frac{p_{x_i y_i}}{p_x p_y} = \sum_i \log \frac{p_{x_i y_i}}{p_x p_y} \]

• Substitution matrix \(S \) where \(S(a,b) = \log \frac{p_{ab}}{p_a p_b} \)
PAM matrices

• Stands for *Point Accepted Mutations*.

• An accepted mutation is a mutation that was positively selected by the environment and did not cause the death of the organism.

• Given a PAM matrix M, $M_{ab} = p[a \rightarrow b]$ in a certain *evolutionary time period*.
Unit of Evolution

• It is difficult to capture from statistical data the relation of proteins that are evolutionary very far apart. If \(a \to b \), we don’t capture the intermediate mutations.

• Define 1 unit of evolution as the amount of evolution that will change 1 in 100 amino acids on average.

• Compute the 1-PAM matrix corresponding to 1 unit of evolution from short time interval statistical data.

• Obtain other \(k \)-PAM matrices from the first one.
1-PAM matrix

• Compute a matrix \(M \), \(M_{ab} = \rho[a \rightarrow b] \) for all \(a, b \).

• Scale \(M \) such that the expected number of mutations \(\Sigma_a \rho_a (1 - M_{aa}) \) is 0.01 (1%).
 [this is same as the probability of a mutation]

• Compute \(\rho_a \) for every \(a \).

• Then use
 \[
 S(a, b) = 10 \log_{10} \left(\frac{M_{ab}}{\rho_b} \right)
 \]
 to obtained an additive score.
1-PAM Computation

• Let f_{ab} = number of times a is aligned with b (both direction).

• Let $f_a = \sum_b f_{ab}$ (number of a’s)

• Let $f = \sum_a f_a$ (all characters)

• Estimate p_{ab} as f_{ab}/f

• Estimate p_a as f_a/f

• Then $M_{ab} = p[a \rightarrow b] = p_{ab}/p_a$

• Note $\sum_b M_{ab} = 1$
Computation (cont.)

- $M_{ab} = \alpha M_{ab}$ (if $a \neq b$)
- $M_{aa} = \alpha M_{aa} + 1 - \alpha$

Note, we still have $\Sigma_b M_{ab} = 1$.

- $\Sigma_a \rho_a (1 - M'_{aa}) = \alpha \Sigma_a \rho_a (1 - M_{aa})$
2-PAM matrix

• $p_2[a \rightarrow b]$ in two units of evolution will be the probability of a mutating to some character c in one unit of evolution and c mutating to b in another unit of evolution.

• $p_2[a \rightarrow b] = \sum_c p[a \rightarrow c].p[c \rightarrow b] = \sum_c M_{ac}.M_{cb}$

• 2-PAM matrix $= M^2$
k-PAM matrix

- k-PAM = M^k

- $S_k(a,b) = 10 \log_{10} \left(\frac{M_{ab}^k}{p_b} \right)$
BLOSUM matrices (BLOCKS substitution matrices)

- BLOSUM matrices are derived from a database of BLOCKS (the BLOCKS database) where each block is a multiple ungapped alignment of related protein sequences.

- The goal is to obtain a scoring for protein sequences that are evolutionary far apart. How far?

- The sequences from each block are clustered, putting two sequences in the same cluster if they have more than $L\%$ similarity (percentage of aligned matching residues).

- Distant sequences \Rightarrow occur in different clusters

Saad Mneimneh
http:// engr.smu.edu/~saad/
BLOSUM computation

- Count number of mutations between distant sequences only, i.e. less than $L\%$ similar.

- a and b aligned but end up in different clusters.

- Increment f_{ab} by $1/n_1n_2$ every time this happens.
Computation (cont.)

• Estimate p_a as $\frac{\sum_b f_{ab}}{\sum_{c,d} f_{cd}}$

• Estimate p_{ab} as $\frac{f_{ab}}{\sum_{c,d} f_{cd}}$

• BLOSUM-L $(a,b) = \log \frac{p_{ab}}{p_a p_b}$
Example score

- Related model M: Assume 50% similarity
 \[p_{aa} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \]
 \[P_{ab} = \frac{1}{2} \cdot \frac{1}{(4^2 - 4)} = \frac{1}{24} \]

- $m = \log \frac{P_{aa}}{p_a p_a} = \log \frac{1/8}{1/4 \cdot 1/4} = 1$

- $s = \log \frac{P_{ab}}{p_a p_b} = \log \frac{1/24}{1/4 \cdot 1/4} = -0.585$