Lecture 9
CG islands

• Whenever CG occurs (CpG to distinguish it from C-G pair across the two strands), there is a high chance that C mutates to T by methylation.

• The CpG dinucleotide is rarer than would be expected by the independent probabilities of C and G.

• The methylation process is suppressed in areas around genes. Such regions are called CpG islands (100-1000 bases long).
Questions

• Q1: Given a short sequence, is it from a CpG island or not?

• Q2: Given a long sequence, does it contain a CpG island or not?

• Start with Q1.
Modeling Dinucleotides

• Dinucleotides are important here. We need to model them in a sequence.

• Build a model that generates sequences in which the probability of a symbol depends on the previous symbol (why?).

• Markov Chain!
Markov Chain

A Markov Chain is defined as:

- A set of states

- For each pair of states i and j, a transition probability a_{ij}.

- $\sum_j a_{ij} = 1$
Markov Chain

- We transition from one state to another in discrete time steps $n = 1, 2, 3, \ldots$

- If we are at state i in time step n, we go to state j in time step $n+1$ with probability a_{ij}.

- The state at time n, x_n, depends on the states x_{n-1}, x_{n-2}, \ldots only through the most recent state x_{n-1}.

\[
p(x_n = j \mid x_0, x_1, \ldots, x_{n-2}, x_{n-1} = i) = a_{ij}
\]
Example

• States: 1, 2

• Transition probabilities

\[a_{11} = 1 - p \]
\[a_{12} = p \]
\[a_{21} = p \]
\[a_{22} = 1 - p \]

\[
P = \begin{pmatrix} 1 - p & p \\ p & 1 - p \end{pmatrix}
\]
\[p(x_n = j \mid x_0 = i) \]

The probability of being in state \(j \) at time \(n \) given that state \(i \) is the starting state:

\[p(x_n = j \mid x_0 = i) = P^n_{ij} \]
Modeling sequences

We will model di-nucleotides using a Markov Chain

states = DNA symbols
Probability of a path
(or a sequence)

The probability of a given sequence of states $x_1...x_n$ is:

$$p(x_1...x_n) =$$

$$p(x_1...x_{n-1}, x_n) =$$

$$p(x_n, x_1...x_{n-1}) =$$

$$p(x_n | x_1...x_{n-1})p(x_1...x_{n-1}) =$$

$$p(x_n | x_{n-1})p(x_1...x_{n-1}) =$$

$$a_{x_{n-1}}x_n p(x_1...x_{n-1}) =$$

$$p(x_1)\Pi_{i=2}^n a_{x_{i-1}}x_i$$
Modeling the beginning and end of the sequence

- $p(x_1\ldots x_n) = p(x_1) \prod_{i=2\ldots n} a_{x_{i-1} x_i}$

- what is $p(x_1)$? Depends on how we start.

- Add a distinct start state $x_0 = S$.
Adding a start state

\[x = x_1 x_2 \ldots x_n \]

\[p(x_1 = i) = a_{si} \]
Adding an end state

\[x = x_1 x_2 \ldots x_n \]

\[p(x_n = i) = p(E \mid x_n = i) = a_{iE} \]
Modeling sequences

- Build the model

- Obtain transitional probabilities from statistical data
 - For CpG islands
 - For non CpG islands
CpG island v.s. non CpG island

• Bring a set of DNA sequences labeled ‘+’ for CpG island and ‘-’ for non CpG island

• In each case, estimate a_{ij}^+ and a_{ij}^-

• For instance, $a_{ij}^+ = c_{ij}^+ / \sum_k c_{ik}^+$ where c_{ij}^+ = number of times j followed i in regions labeled ‘+’

• Use log-odds ratio to decide whether a sequence came from a CG-island or not
Example

<table>
<thead>
<tr>
<th>a_{ij}^+</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.18</td>
<td>0.27</td>
<td>0.43</td>
<td>0.12</td>
</tr>
<tr>
<td>C</td>
<td>0.17</td>
<td>0.37</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>G</td>
<td>0.16</td>
<td>0.34</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>T</td>
<td>0.08</td>
<td>0.36</td>
<td>0.38</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a_{ij}^-</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.30</td>
<td>0.20</td>
<td>0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>C</td>
<td>0.32</td>
<td>0.30</td>
<td>0.08</td>
<td>0.30</td>
</tr>
<tr>
<td>G</td>
<td>0.25</td>
<td>0.25</td>
<td>0.29</td>
<td>0.21</td>
</tr>
<tr>
<td>T</td>
<td>0.18</td>
<td>0.24</td>
<td>0.29</td>
<td>0.29</td>
</tr>
</tbody>
</table>

$$S(x) = \log \frac{p(x \mid +)}{p(x \mid -)} = \log \prod_{i=1..n} \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1..n} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-}$$

Saad Mneimneh
http:// engr.smu.edu/~saad/
Questions

• Done with Q1.

• Q2: Given a long sequence, does it contain a CpG island or not?

• How can we answer Q2?
Markov Chain model

• The Markov Chain model that we have just build can be used

• Calculate the log-odds score for windows of size, say 100, in the sequence

• CpG islands will stand out with positive values
Problems?

The previous approach is unsatisfactory

– CpG islands have variable length

– Why use a window of size 100? Why not 10 or 50 or 200? (no way to tell best size, could be average length of CpG island, but still unsatisfactory)
Better solution

• Represent CpG islands and non CpG islands in one model

• Both Markov chains build earlier put together with small transition probability between them

• We will have two states for each nucleotides ➔ rename them A+, C+, G+, T+ and A-, C-, G-, T-
What is the big difference now?

• There is not a one-to-one correspondence between the states and the symbols.
 – Given a symbol C, it could have been generated by state C+ or state C-

• Before, a sequence uniquely determines the path

• Now, for a given sequence, we want to find the most likely path
Hidden Markov Model

A Hidden Markov model HMM is defined as:
[state is hidden, decouple states from symbols]

- A set of *hidden* states

- For each pair of states i and j, a transition probability a_{ij}.

- $\Sigma_j a_{ij} = 1$

- For each state k, emission probabilities
 $e_k(b) = p(x_i = b \mid \pi_i = k)$
 [now we use variable π for states and variable x for symbols]

- $\Sigma_b e_k(b) = 1$ for each state k

- Markov property:

 $p(\pi_n = j \mid x_0 \ldots x_{n-1}, \pi_0 \ldots \pi_{n-2}, \pi_{n-1} = i) =
 p(\pi_n = j \mid \pi_{n-1} = i) = a_{ij}$
Questions with HMMs

- **Evaluation**: given x, what is the probability $p(x)$ that it was produced by the model?

- **Decoding**: given x, what is the most probable path that produces x in the model?

- **Learning**: given x, what are the most probable parameters (transitional probabilities and emission probabilities) of the model?
The dishonest Casino

- Casino uses a fair die most of the time
- Loaded die has \(p(1) = p(2) = p(3) = p(4) = p(5) = 0.1, \) \(p(6) = 0.5 \)
- Casino switches from fair to loaded with a probability of 0.05
- Switches back with probability 0.1

[think about similarities with CpG island]
HMM for dishonest casino

We just see the sequence of rolls $x = x_1 \ldots x_n$. We do not know the path $\pi = \pi_1 \ldots \pi_n$ that generated the sequence x. This is why the state is hidden.

We need to find the most probable path π.
Most probable path

- Label start state and end state by 0.

- The joint probability of observing a sequence of symbols $x = x_1...x_n$ emitted by a sequence of states $\pi = \pi_1...\pi_n$:
 \[
 p(x,\pi) = a_{0\pi_1} e_{\pi_1}(x_1)...a_{\pi_{n-1}\pi_n} e_{\pi_n}(x_n) a_{\pi_n0}
 = a_{0\pi_1} \prod_{i=1}^{n} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}
 \]
 where $\pi_{n+1} = 0$

- We want to find $\pi^* = \arg\max_\pi p(\pi \mid x) = \arg\max_\pi p(x,\pi)$

- Try all possible π: EXPONENTIAL!
DP... again 😞

- $v_i(i) =$ probability of most probable path
 $\pi = \pi_1...\pi_i$ for $x_1...x_i$ ending in state l ($\pi_i = l$)

- $v_i(i) = e_i(x_i). \max_k (v_k(i-1) . a_{kl})$
Derivation

\[v_l(i) \]
\[= \max_{\pi_1 \ldots \pi_{i-1}} p(x_1 \ldots x_i, \pi_1 \ldots \pi_{i-1}, \pi_i=l) \]
\[= \max_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i=l, x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \max_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i=l | x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \max_{\pi_1 \ldots \pi_{i-1}} p(x_i, \pi_i=l | \pi_{i-1}) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-1}) \]
\[= \max_{\pi_1 \ldots \pi_{i-2}, k} p(x_i, \pi_i=l | \pi_{i-1} = k) \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \max_{\pi_1 \ldots \pi_{i-2}, k} e_l(x_i) a_{kl} \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \max_k \max_{\pi_1 \ldots \pi_{i-2}} e_l(x_i) a_{kl} \cdot p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \]
\[= \max_k \max_{\pi_1 \ldots \pi_{i-2}} p(x_1 \ldots x_{i-1}, \pi_1 \ldots \pi_{i-2}, \pi_{i-1} = k) \cdot e_l(x_i) a_{kl} \]
\[= \max_k v_k(i-1) e_l(x_i) a_{kl} = e_l(x_i) \max_k v_k(i-1) a_{kl} \]
Viterbi decoding algorithm

- Initialization
 \[v_0(0) = 1, \quad v_k(0) = 0 \text{ for } k > 0 \]

- Main iteration

 \[
 \begin{align*}
 v_i(i) &= e_i(x_i) \cdot \max_k(v_k(i-1) \cdot a_{kl}) \\
 \text{ptr}_i(i) &= \arg\max_k(v_k(i-1)a_{kl})
 \end{align*}
 \]

- Termination

 \[
 \rho(x, \pi^*) = \max_k(v_k(n) a_{k0})
 \]
Example

What is the most probable path for the following outcome of the casino?

6666

```
<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0.0833</td>
<td>0.0132</td>
<td>0.0021</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0.25</td>
<td>0.113</td>
<td>0.1013</td>
</tr>
</tbody>
</table>
```

Saad Mneimneh
http://engr.smu.edu/~saad/