
CHAPTER 1

OVERVIEW

Computers and software systems are becoming ubiquitous in modern society. Worldwide
users rely on individual and interconnected computers, as well as the global information
infrastructure, such as the Internet and the World Wide Web (WWW), to fulfill their needs
for information processing, storage, search, and retrieval. All these needs are met with
the support of the underlying software. This reliance requires the software to function
correctly over a long time, to be easy to use, and so on. In general, such requirements for
high quality need to be satisfied by the people involved in the development and support of
these software systems through various quality assurance activities, and the claims for high
quality need to be supported by evidence based on concrete measurements and analyses.
This chapter introduces various concepts related to quality, quality assurance (QA), and
quality engineering, and outlines the contents of this book.

1.1 MEETING PEOPLE’S QUALITY EXPECTATIONS

In general, people’s quality expectations for software systems they use and rely upon are
two-fold:

1. The software systems must do what they are supposed to do. In other words, they
must do the right things.

2. They must perform these specific tasks correctly or satisfactorily. In other words,
they must do the things right.

3

4 OVERVIEW

The former requires that the software be the “right software”, or perform the right
functions. For example, an airline reservation system is supposed to handle reservations,
not intended to fly airplanes automatically. The focus of the related activities is to validate
the required software functions under their intended operational environment. The latter
requires that the software systems perform their intended functions without problems. In
the airline reservation system example, the system should help travel agents or individual
travelers make valid reservations within a pre-specified time limit, instead of making invalid
ones, taking too long to make a reservation, or refusing to make reservations without proper
justification. The focus of the related activities is to verify that the implemented software
functions operate as specified.

Main tasks for software quality engineering

As the main topics of this book, the tasks for software QA and quality engineering are
to ensure software quality through the related validation and verification activities. These
activities need to be carried out by the people and organizations responsible for develop-
ing and supporting these software systems in an overall quality engineering process that
includes:

• quality planning;

• execution of selected QA or software validation and verification activities;

• measurement and analysis to provide convincing evidence to demonstrate software
quality to all parties involved.

In particular, customers and users need to have the assurance that their quality expectations
are satisfied by the delivered software systems. The overall experience and lessons learned
in delivering such high-quality software systems can be packaged into the software quality
engineering process for quantifiable quality improvement in future development projects
or to provide better product support.

When viewed from a different angle, the negative impact of software problems is also
increasing, accompanying the pervasive use of and reliance on software systems in modern
society. The problems could be associated with performing wrong functions, or performing
intended functions incorrectly, thus causing unintended consequences. We would like to
see such negative impact be eliminated, if possible. However, due to the increasing demand
for automation, additional functionality and convenience by modern society to the computer
and software systems, and due to the ubiquitous nature of modern computer, software, and
information infrastructure, the size and complexity of modern software systems have also
increased steadily. This increase in size and complexity also has unintended consequences
in terms of causing quality problems.

Quality problems in large software systems

Many software systems nowadays are highly complex and contain millions of lines of
source code. Examples of such large software systems can be found in virtually every
product segment or every application domain, from various operating systems, such as
commonly used versions of the Microsoft Windows and UNIX operations systems, to com-
mercial software products, such as database products, to aviation and in-flight entertainment

MEETING PEOPLE’S QUALITY EXPECTATIONS 5

software used on Boeing 777, to defense related software systems, such as various com-
mand/communication/control (CCC) systems.

Such large and complex systems typically involve hundreds or even thousands of people
in their development over months or even years, and the systems are often to be operated
under diverse, and sometimes unanticipated, application environments. One may argue that
some systems are unnecessarily large and complex. According to (Wirth, 1995), such “fat
software” may be caused by indiscriminately adding non-essential features, poor design,
improper choices of languages and methodologies, which could be addressed by disci-
plined methodologies and return to essentials for “lean software”. Various QA techniques,
including many of those covered in this book, can help produce high-quality, lean software.

However, there is no “silver bullet”, or an all powerful and effective solution to the
size, complexity, quality, and other software engineering problems, due to the fundamental
requirements and constraints that a software system must satisfy (Brooks, 1987). Accom-
panying the size and complexity problems are the many chances for other problems to be
introduced into the software systems. Therefore, dealing with problems that may impact
customers and users negatively and trying to manage and improve software quality are a fact
of life for people involved in the development, management, marketing, and operational
support of most modern software systems.

Testing, quality assurance (QA), and quality engineering

The above factors make it virtually impossible or practically infeasible to achieve the com-
plete prevention or elimination of software problems and related negative impact. Con-
sequently, various software QA activities are carried out to prevent or eliminate certain
classes of problems that lead to such negative impact, or to reduce the likelihood or severity
of such negative impact when it is unavoidable. This book systematically describes topics
and issues related to these software QA activities, with an emphasis on the technical aspects.

Software testing plays a central role among the software QA activities. By running
the software system or executing its prescribed functions, testers can determine if the ob-
served system behavior conforms to its specifications or requirements. If discrepancies
exist between the two, follow-up actions can be carried out to locate and remove the re-
lated problems in software code, which may also include modifying the software design.
Therefore, the detection and removal of defects through testing help reduce the number of
defects in delivered software products, thus helping to achieve the quality goals. Even if no
discrepancy is observed, the specific instances can be accumulated as evidence to demon-
strate that the software performs as specified. Consequently, testing is the most frequently
used means to assure and to demonstrate software quality. A substantial part of this book
is devoted to software testing, with an emphasis on commonly used techniques that have
proven to be effective in various practical application environments.

Beyond testing, there are many other QA alternatives supported by related techniques
and activities, such as inspection, formal verification, defect prevention, and fault tolerance.
Inspection is a critical examination of software code or other artifacts by human inspectors
to identify and remove problems directly, without resorting to execution. Fault tolerance
prevents global system failures even if local problems exist, through various redundancies
strategically designed and implemented into the software systems. Other QA techniques
employ specific means to assure software quality. This book also provides a comprehensive
coverage of these topics.

In addition, all these QA activities need to be managed in an engineering process we
call the software quality engineering process, with quality goals set early in the product

6 OVERVIEW

Software quality engineering

Quality assurance

Testing

Figure 1.1 Scope and content hierarchy: Testing, quality assurance (QA), and software quality
engineering

development, and strategies for QA selected, carried out, and monitored to achieve these
preset quality goals. As part of this overall process, data collected during the QA activities,
as well as from the overall development activities,can be analyzed to provide feedback to the
software development process for decision making, project management, and quantifiable
quality improvement. This book also provides a comprehensive coverage of these topics.

1.2 BOOK ORGANIZATION AND CHAPTER OVERVIEW

Figure 1.1 illustrates the general scope of the topics introduced above: Testing is an impor-
tant subset of QA activities; and QA is an important subset of quality engineering activities.
This diagram also explains our book title: “Software Quality Engineering: Testing, Quality
Assurance, and Quantifiable Improvement”. This book is organized in four major parts and
22 chapters, with the main topics outlined below.

Part I: Overview and Basics

Part I gives a general introduction and overview of the topics covered in the book, and
presents the basic concepts and definitions related to quality, QA, testing, quality engineer-
ing, etc. Specific questions answered include:

• About this book: What is it? How to use it? How is it organized? In addition, what
background knowledge is needed to have a thorough understanding of the technical
aspects of this book? These questions are answered in Chapter 1.

• What is software quality? In particular, what are the different views of quality? Is
quality a single, atomic concept, or does it consist of many different attributes or
characteristics? What is the relationship between quality, correctness, and defect?
Can we narrow down the definition of quality to better focus our attention on various
QA activities commonly carried out during software life cycles? These questions are
answered in Chapter 2.

• What is QA? The question is answered from a particular perspective in Chapter 3,
representing a defect-based interpretation of quality and QA.

• What are the different QA activities and related techniques? A defect-based classifi-
cation is presented, also in Chapter 3, for the major QA alternatives and techniques,
such as testing, inspection, formal verification, fault tolerance, and so on.

• How to fit the different QA activities into the software development processes? What
about other frameworks to classify QA activities? These questions are answered in
Chapter 4.

BOOK ORGANIZATION AND CHAPTER OVERVIEW 7

• The QA activities are broadened in Chapter 5 into quality engineering that includes
quality planning prior to specific QA activities and measurement, analysis, and feed-
back activities to close the loop for quality assessment and quantifiable improvement.

Part II: Software Testing

Part II deals with all the important topics related to software testing, with an emphasis on
commonly used testing techniques that have proven to be effective and efficient in many
practical application environments. The chapters in this part are organized into two sub-
parts: Descriptions of specific testing techniques (Chapters 8 through 11) are surrounded
by chapters on the general issues of testing (Chapters 6, 7, and 12). Individual chapters are
described below:

• General questions, issues, terminology about testing, including the generic testing
process and a taxonomy for testing, are discussed in Chapter 6.

• The major testing activities, people’s roles and responsibilities in these activities, test
management, and test automation issues are covered in Chapter 7.

• Checklist and partition-based testing: Chapter 8 starts with the simplest testing of
them all, ad hoc testing, then progresses to more organized testing using simple
models such as lists and partitions. Specific testing techniques covered in Chapter 8
include:

– testing with different types of general checklists;

– decision and predicate testing;

– usage-based statistical testing using flat operational profiles.

• Boundary testing: As a special case and extension of partition testing, we cover
boundary testing in Chapter 9. Application of boundary testing ideas in other testing
situations is also covered.

• State-based testing: Both the finite-state machines (FSMs), which serve as the basis
for state-based testing, and the augmented FSMs, which form Markov chains for
more in-depth usage-based statistical testing, are covered in Chapter 10.

• Interaction testing: Instead of focusing on individual partitions or states, the testing
techniques described in Chapter 11 deal with the interactions along a complete ex-
ecution path or a dependency slice. Specifically, this chapter covers the following
traditional testing techniques:

– control-flow testing (CFT);

– data-flow testing (DFT).

• Chapter 12 discusses application of specific testing techniques for specific testing
tasks in different sub-phases or in specialized tasks. The integration of different
testing techniques to fulfill some common purposes is also discussed.

8 OVERVIEW

Part III: Quality Assurance Beyond Testing

Part III covers important QA techniques other than testing, including the ones described
below, and a comparison of all the QA alternatives at the end.

• Various defect prevention techniques are described in Chapter 13.

• Software inspection, or critical examination of software artifacts by human inspectors,
is described in Chapter 14.

• Formal verification of program correctness with respect to its formal specifications
is covered in Chapter 15.

• Fault tolerance techniques that prevent failures through some redundancy or dupli-
cation are discussed in Chapter 16. Related techniques based on similar ideas, such
as failure containment to minimize failure impact, are also discussed in Chapter 16.

• Some program analysis techniques, specifically static analyses, are also covered in
Chapter 14 in connection to inspection. Related topics on dynamic program analyses
are briefly covered in Chapter 12 in connection to specialized testing techniques.

• Comparison of different QA alternatives and techniques, including those covered in
Part III as well as testing covered in Part II, is presented in Chapter 17.

Part IV: Quantifiable Quality Improvement

Part IV covers the important activities carried out in parallel or as follow-up to the main
QA activities described in Part II and Part III. The purpose of these activities is to monitor
the QA activities to provide quantitative quality assessment and feedback to the quality
engineering process. Such assessment and feedback can be used to help with decision
making, project management, and various improvement initiatives. The main contents of
the specific chapters in this part are described below:

• First, the parallel and follow-up activities, as well as the collection and usage of the
raw and processed data in related analyses to provide specific feedback for various
purposes, are described in Chapter 18.

• Chapter 19 describes different models and measurements for quality assessment and
improvement, and classifies them according to the information provided and the
specific types of data required.

• Defect classification and analysis models are described in Chapter 20, as an important
sub-class of quality assessment models that focuses on the collection and analysis of
detailed defect information.

• Further analysis of the discovered defects and other measurement data from QA
and overall development activities can be carried out to identify high-risk or high-
defect areas for focused remedial actions aimed at effective quality improvement.
Various risk identification techniques and related models for doing this are presented
in Chapter 21.

• As an alternative to the defect-based view of quality that is closer to the developers’
perspective, reliability is a quality measure that is closer to the users’ perspective

DEPENDENCY AND SUGGESTED USAGE 9

and more meaningful to target customers. Chapter 22 presents software reliability
models and analysis techniques to provide reliability assessments and guidance for
reliability improvement.

1.3 DEPENDENCY AND SUGGESTED USAGE

The integration of the interconnected chapters is an important feature of this book. We next
examine the topic and chapter dependencies, and discuss different ways that these topics
can be combined for different readers with different purposes in mind.

Chapter dependency

Figure 1.2 depicts the dependencies among different chapters, as well as among different
parts, with each part grouped by dotted lines. We use solid lines to depict essential depen-
dencies and dashed lines to depict dependencies that are desirable but not essential. An
example of the latter type of dependencies is the non-essential dependency between quality
assessment and analysis in Part IV and QA topics in Parts II and III: The knowledge of
the topics presented in Parts II and III would make most of topics covered in Part IV more
meaningful. However, one can have a general understanding of Part IV without a thorough
knowledge of Parts II and III. Similarly, although all the chapters in Part III except the last
one can be treated as parallel ones, Chapters 13 through 16 generally follow the sequence
of activities or phases in the development process. Therefore, it would be more logical to
follow this sequence. Some specific dependencies are explained below:

• In addition to Chapter 17’s dependency on previous chapters of Part III, it should also
be preceded by chapters in Part II, at least Chapter 6, because the comparison of QA
alternatives in Chapter 17 rely on the general knowledge of individual alternatives
and techniques.

• The chapters on testing techniques in Part II follow the natural progression from
simple models to complex ones. However, there is no essential dependency between
those based on simple partitions (Chapters 8 and 9) and those based on more complex
models (Chapters 10 and 11).

• The last two chapters in Part IV can be treated as parallel chapters except that part of
Chapter 22, the topic on tree-based reliability models (TBRMs), uses the modeling
technique called tree-based modeling covered in Chapter 21.

Suggested usage

This book is suitable as the main textbook for a one-semester course in various software
engineering programs. Other people who are interested in learning all the major topics in
software quality engineering should also read the whole book. However, for people who
just want to get a general idea of the topics covered in this book, the following chapters are
appropriate:

• The minimal set: Chapters 1–6, 17, and 18. This minimal set includes all five chapters
in Part I and one chapter each from Parts II, III, and IV, respectively.

10 OVERVIEW

Chapter 7

Chapter 8 Chapter 10

Chapter 12

Chapter 9 Chapter 11

Essential dependency

Non−essential dependency

Chapter 17

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 1

PART I

PART IV

PART III

PART II

Chapter 6

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Figure 1.2 Chapter and PART dependency diagram

Between these two extremes (the minimal set and all chapters), there are also other
possible usages of this book. All the following would assume the basic coverage of minimal
set of chapters above and some other chapters in addition to it. Some suggested usages are
given below:

• Half semester course: Cover all in selective details, with emphasis on either Part II,
III, or IV.

• Short course on specialized topics: minimal set above plus one of the part from Parts
II, III, and IV. Such short courses would be similar in length to about ten hours or
3–4 weeks of class lectures.

• Other combinations of chapters are also possible, but would require the reader to keep
track of the cross-references in topics and related dependencies using Figure 1.2 as
the guide.

In addition to its use as a textbook, or as a technical book that introduces other people to
the important topics of software quality engineering, the comprehensive coverage of all the
important topics and pointers to further reading should also make this book a good reference
for readers in their professional career.

READER PREPARATION AND BACKGROUND KNOWLEDGE 11

1.4 READER PREPARATION AND BACKGROUND KNOWLEDGE

To have a good understanding of the technical details, the readers need to have a general
knowledge of mathematics, statistics, computer science, and software engineering, equiv-
alent to that at the level of college juniors, seniors, or new graduate students in computer
science, software engineering, or a related field. The following is intended as a general
checklist for the readers: If you find that you lack certain background knowledge listed be-
low, you need to study or review them on your own before proceeding to related technical
discussions. This checklist will help readers link specific pieces of background knowledge
to specific parts of the book.

Mathematical and statistical knowledge

Reviewing standard textbooks on mathematics and statistics covering the following topics
would be useful if you are unfamiliar with some of them:

• Basic concepts of relations, algebra, and set theory: Used throughout the book, and
especially in the following:

– Sets, subsets, partitions, basic types of relations, and equivalence classes in
Chapter 8 for partition-based testing.

– Use of algebraic equations to define boundaries in Chapter 9 for boundary
testing.

– Precedence and dependency relations in Chapter 11 for control-flow and data-
flow testing.

– Cause–effect relations in Chapter 16 for hazard analysis and safety assurance,
and in Chapter 20 for defect analysis.

• Logic, particularly Boolean logic, and related formalisms: Used throughout the book,
and especially in the following:

– Boolean logic for predicate and decision testing in Chapter 8.

– Mathematical logic and formalisms in Chapter 15 for formal verification of
program correctness.

• Some basic concepts of graph theory: Used throughout the book, and especially in
the following:

– Decision trees in Chapter 8 for operational profiles used in statistical testing.

– Graph elements for finite-state machines (FSMs) and related testing in Chap-
ter 10.

– Flow-chart like situations for control-flow testing in Chapter 11.

– Data dependency graphs (a tree-structured graph) for data-flow testing in Chap-
ter 11.

– Trees in fault-tree analysis and event-tree analysis in Chapter 16 for hazard
analysis and safety assurance.

– Tree-based models for risk identification in Chapter 21 and for reliability anal-
ysis in Chapter 22.

12 OVERVIEW

• Basic concepts of probability and statistics: Particularly important to the following
topics:

– Usage-based testing in Chapters 8 and 10.

– Defect classification and distribution analysis in Chapter 20.

• Basic concepts of statistical analysis and modeling: Important to the topics in Part
IV, in particular,

– General analysis and modeling techniques in Chapter 19.

– Various specific types of analyses for risk identification in Chapter 21.

– Stochastic process and analysis for software reliability modeling in Chapter 22.

Computer science knowledge

Reviewing standard textbooks on computer science covering the following topics would be
useful if you are unfamiliar with some of them:

• Familiarity with programming and general software development using a high-level
language. However, to make the understanding of basic concepts independent of spe-
cific implementation languages, example programs in the book are given in pseudo-
code form. Therefore, at a minimum, the readers need to be familiar with pseudo-
code commonly used to present basic algorithms in computer science literature and
sometimes to illustrate design ideas during software development.

• Fundamentals of computing, particularly:

– Finite-state machines (FSMs), which are the basis for state-based testing in
Chapter 10.

– Execution flow and data dependencies, which are the basis for control flow and
data flow testing in Chapter 11.

– Some formalisms about computing and programming languages used in Chap-
ters 10, 11, and 15.

– Some analysis techniques commonly identified with computer science and ar-
tificial intelligence, such as pattern matching, learning algorithms, and neural
networks used in Chapter 21.

• Design and organization of computer and software systems such as used in parallel
and redundant systems in Chapter 16.

Software engineering knowledge

Reviewing standard textbooks on software engineering covering the following topics would
be useful if you are unfamiliar with some of them:

• General knowledge of software development and maintenance activities, including
requirement analysis, product specification, design, coding, testing, release, support,
etc.

PROBLEMS 13

• General awareness of different software development processes, including water-
fall, spiral, incremental, iterative, extreme programming (XP), etc., and the software
process capability maturity model (CMM).

• General awareness with software management and system engineering issues, in-
cluding economic consequences of project decisions, tradeoffs between different
objectives and concerns, feedback and improvement mechanisms, optimization, etc.

• Familiarity with at least one of the commonly used development methodologies (and
related tools), such as object-oriented development (OOD), structured development
(SD), Cleanroom technology, agile methods, formal methods, etc.

• Practical experience working with some industrial software projects would be ex-
tremely helpful.

Problems

1.1 Consider some of your daily activities and classify them according the role played
by computers and underlying software: no role, minor role, major role, and critical role.
If “no role” is your answer for all the areas/activities, STOP — this is not a book for you.
Otherwise, perform an overall assessment on how important software quality is to your
daily activities.

1.2 Use the dependency diagram in Figure 1.2 and related explanations in Section 1.3 to
construct your individual study plan to fulfill your personal goals.

1.3 Use the checklist in Section 1.4 and your personal goals to see if you need to review
any background knowledge. If so, construct your individual study plan to get yourself ready
for the rest of the book.

