
xxvi PREFACE

courses, such as “Software Quality Assurance” and “Software Verification and Validation”.
With its comprehensive coverage of all the major topics in software quality engineering in
an integrated framework, this book is suitable as the main textbook for such a course.

In addition, this book could be used as a technical reference about software testing,
QA, and quality engineering by other readers, particularly professionals who perform QA
activities as testers, inspectors, analysts, coordinators, and so forth. It should also be useful
to people involved in project planning and management, product release, and support.
Similarly, this book could help prepare students for their internship assignments or future
employment related to testing or QA.

For more information on this book, please visit the following website:
www.engr.smu.edu/∼tian/SQEbook/

Supplementary material for instructors is available at the Wiley.com product page:
www.wiley.com/WileyCDA/WileyTitle/productCd-0471713457.html

Acknowledgments

First, I thank all my students in the SMU/CSE 5314/7314 classes since 1995, particularly,
Katherine Chen, Tony Cluff, DeLeon English, Janet Farrar, Nishchal Gupta, Gina Habash,
Chris Jordan, Zhao Li, Sateesh Rudrangi, Zahra Shahim, and Nathan Vong, for reading the
manuscript and offering many invaluable suggestions. I also thank Tim Culver, for sharing
his detailed class notes with me, and Li Ma, for checking the exercise questions.

I thank the co-authors of my technical papers and the sponsors of my research projects for
the material included in this book based on related publications. Since all these publications
are individually cited in the bibliography, I only single out my project sponsors and industrial
collaborators here: National Science Foundation, through awards MRI-9724517, CCR-
9733588, and CCR-0204345; Texas Higher Education Coordinating Board, through awards
003613-0030-1999and 003613-0030-2001; IBM, Nortel Networks, and Lockheed-Martin.

I am grateful to SMU for granting me a sabbatical leave for the 2003/2004 academic
year to work on my research and to write this book. I thank my colleagues at SMU,
particularly Prof. Hesham El-Rewini, for their encouragement and help. I also appreciate
the opportunity to work for the IBM Software Solutions Toronto Laboratory between 1992
and 1995, where I gained invaluable practical experience in software QA and testing.

This book would not be possible without the love and support of my wife Sharon and my
daughters Christine and Elizabeth. Sharon, a professional tester for many years, also helped
me greatly by offering her invaluable technical critique. Utilizing her strength in reading
and writing, Christine edited the entire manuscript (and many of my previous papers too).

I also thank my editor Val Moliere, her assistant Emily Simmons, and my production
editor Melissa Yanuzzi, for their professional help.

JEFF (JIANHUI) TIAN

Plano, Texas



22 WHAT IS SOFTWARE QUALITY?

• The errors as missing or incorrect human actions are not directly depicted within one
box, but rather as actions leading to the injection of faults in the middle box because
of some error sources in the left box.

• Usage scenarios and execution results, depicted in the right box, describe the input to
software execution, its expected dynamic behavior and output, and the overall results.
A subset of these behavior patterns or results can be classified as failures when they
deviate from the expected behavior, and is depicted as the collection of circled failure
instances.

With the above definitions and interpretations, we can see that failures, faults, and errors
are different aspects of defects. A causal relation exists among these three aspects of defects:

errors→ faults→ failures

That is, errors may cause faults to be injected into the software, and faults may cause
failures when the software is executed. However, this relationship is not necessarily 1-to-1:
A single error may cause many faults, such as in the case that a wrong algorithm is applied
in multiple modules and causes multiple faults, and a single fault may cause many failures
in repeated executions. Conversely, the same failure may be caused by several faults, such
as an interface or interaction failure involving multiple modules, and the same fault may be
there due to different errors. Figure 2.1 also illustrates some of these situations, as described
below:

• The error source e3 causes multiple faults, f2 and f3.

• The fault f1 is caused by multiple error sources, e1 and e2.

• Sometimes, an error source, such as e5, may not cause any fault injection, and a
fault, such as f4, may not cause any failure, under the given scenarios or circum-
stances. Such faults are typically called dormant or latent faults, which may still
cause problems under a different set of scenarios or circumstances.

Correctness-centered properties and measurements

With the correctness focus adopted in this book and the binary partition of people into
consumer and producer groups, we can define quality and related properties according to
these views (internal views for producers vs. external views for consumers) and attributes
(correctness vs. others) in Table 2.1.

The correctness-centered quality from the external view, or from the view of consumers
(users and customers) of a software product or service, can be defined and measured by
various failure-related properties and measurement. To a user or a customer, the primary
concern is that the software operates without failure, or with as few failures as possible.
When such failures or undesirable events do occur, the impact should be as little as possible.
These concerns can be captured by various properties and related measurements, as follows:

• Failure properties and direct failure measurement: Failure properties include infor-
mation about the specific failures,what they are, how they occur,etc. These properties
can be measured directly by examining failure count, distribution, density, etc. We
will examine detailed failure properties and measurements in connection with defect
classification and analysis in Chapter 20.



DEFECT PREVENTION 31

removed as a part of or as follow-up to these activities. Consequently, no operational
failures after product release will be caused by these faults.

• Still other faults, such as f2, are blocked through fault tolerance for some execution
instances. However, fault-tolerance techniques typically do not identify and fix the
underlying faults. Therefore, these faults could still lead to operational failures under
different dynamic environments, such as f2 leading to x2.

• Among the failure instances, failure containment strategy may be applied for those
with severe consequences. For example, x1 is such an instance, where failure con-
tainment is applied to it, as shown by the surrounding dotted circle.

We next survey different QA alternatives, organized in the above classification scheme,
and provide pointers to related chapters where they are described in detail.

3.2 DEFECT PREVENTION

The QA alternatives commonly referred to as defect prevention activities can be used for
most software systems to reduce the chance for defect injections and the subsequent cost
to deal with these injected defects. Most of the defect prevention activities assume that
there are known error sources or missing/incorrect actions that result in fault injections, as
follows:

• If human misconceptions are the error sources, education and training can help us
remove these error sources.

• If imprecise designs and implementations that deviate from product specifications or
design intentions are the causes for faults, formal methods can help us prevent such
deviations.

• If non-conformance to selected processes or standards is the problem that leads to fault
injections, then process conformance or standard enforcement can help us prevent
the injection of related faults.

• If certain tools or technologies can reduce fault injections under similar environments,
they should be adopted.

Therefore, root cause analyses described in Chapter 21 are needed to establish these pre-
conditions, or root causes, for injected or potential faults, so that appropriate defect preven-
tion activities can be applied to prevent injection of similar faults in the future. Once such
causal relations are established, appropriate QA activities can then be selected and applied
for defect prevention or to implement a defect prevention process (?).

3.2.1 Education and training

Education and training provide people-based solutions for error source elimination. It has
long been observed by software practitioners that the people factor is the most important
factor that determines the quality and, ultimately, the success or failure of most software
projects. Education and training of software professionals can help them control, manage,
and improve the way they work. Such activities can also help ensure that they have few, if



USING UMMS FOR USAGE-BASED STATISTICAL TESTING 165

• Overall probability threshold for complete end-to-end operations to ensure that com-
monly used complete operation sequences by target customers are covered and ade-
quately tested.

• Stationary probability threshold to ensure that frequently visited states are covered
and adequately tested.

• Transition probability threshold to ensure commonly used operation pairs, their in-
terconnections and interfaces are covered and adequately tested.

To use the overall probability threshold, the probability for possible test cases (or com-
plete operations) need be calculated and compared to this threshold. For example, the
probability of the sequence ABCDEBCDC in Figure 10.3 can be calculated as the products
of its transitions, that is,

1× 1× 0.99× 0.7× 1× 1× 0.99× 0.3 = 0.205821.

If this is above the overall end-to-end probability threshold, this test case will be selected
and executed.

If the Markov chain is stationary, it can reach an equilibrium or become “stationary”
(Karlin and Taylor, 1975). In such a state, the stationary probability πi for being in state i
remains the same before and after state transitions over time. The set {πi} can be obtained
by solving the following set of equations:

πj =
∑

i

πipij , πi ≥ 0, and
∑

i

πi = 1,

where pij is the transition probability from state i to state j. The stationary probability
πi indicates the relative frequency of visits to a specific state i after the Markov chain
reaches this equilibrium. Therefore, testing states above a given threshold is to focus on
frequently used individual operations or system states. For the many Markov chains that are
not stationary (Karlin and Taylor, 1975), the same idea of focused testing can still be used
by approximating stationary probabilities with the recorded relative frequencies of visit.

A mirror case to test states with stationary probabilities above a given threshold is to
test links with transition probabilities above a given threshold. In this case, the testing is
actually much easier to perform, because all the pij’s are specified in the UMMs. A larger
value of pij indicates a commonly used operation (if we associate individual operations
with transitions) or operational pair (if we associate individual operations with states) in
the sense that whenever i is reached, j is likely to follow.

Some combinations of these thresholds could also be used if they make sense for some
specialized situations. For example, if state i is visited very infrequently (low πi), then
even larger values of pij may not be that meaningful if state j is not tightly connected as
the destination of other links (that is, low pkj , k 6= i). In this example, we would combine
stationary probability threshold with link probability threshold to select our test cases.

10.5.2 Testing based on other criteria and UMM hierarchies

Coverage, importance and other information or criteria may also be used to generate test
cases. In a sense, we need to generate test cases to reduce the risks involved in different usage
scenarios and product components, and sometimes to identify such risks as well (Frankl and
Weyuker, 2000). The direct risks involved in selective testing include missing important



258 FORMAL VERIFICATION

{n ≥ 1}
1 y ← 1;
2 i← n;
3 while i > 1 do

4 begin

5 y ← y × i;
6 i← i− 1;
7 end

{y = n!}

Figure 15.1 A program segment with its formal specification

In addition, when we finished loop, we should have i = 1. Therefore, we select our loop
invariant to be I1 ∧ (i ≥ 1), or :

I ≡
(

y =
n!

i!

)

∧ (i ≥ 1).

The loop condition is: B ≡ i > 1, and ¬B ≡ i ≤ 1. Therefore, at loop termination, we
have the post-conditions as: I ∧ ¬B, with:

I ∧ ¬B
≡ I1 ∧ (i ≥ 1) ∧ (i ≤ 1)
≡ I1 ∧ (i = 1)
≡

(

y = n!
i!

)

∧ (i = 1)
≡ (y = n!).

which is exactly our post condition for the entire program segment.
Now we need to show that I is indeed the invariant for the loop. First, by applying

Axiom A3 to line 6, we get:

{(y = n!
(i−1)! ) ∧ (i− 1 ≥ 1)}

i← i− 1;
{(y = n!

i! ) ∧ (i ≥ 1)}.

And, again applying Axiom A3 to line 5, we get:

{
(

y × i = n!
(i−1)!

)

∧ (i− 1 ≥ 1)}
y ← y × i;

{
(

y = n!
(i−1)!

)

∧ (i− 1 ≥ 1)}.

The precondition to line 5 can be rewritten as:
(

y × i =
n!

(i− 1)!

)

∧ (i− 1 ≥ 1) ≡
(

y =
n!

i!

)

∧ (i ≥ 2)

Because for integer i, (i ≥ 2) ≡ (i > 1), we have:
(

y =
n!

i!

)

∧ (i ≥ 2) ≡
(

y =
n!

i!

)

∧ (i > 1)



OTHER APPROACHES 259

We can then establish the equivalence between this precondition with I ∧B, as follows:

I ∧ B ≡
(

y =
n!

i!

)

∧ (i ≥ 1) ∧ (i > 1) ≡
(

y =
n!

i!

)

∧ (i > 1)

Therefore, the verified pre-condition to line 5 is I ∧ B.
Combining the above for line 5 and line 6 using Axiom A4, and letting

Pi ≡ (y =
n!

(i− 1)!
) ∧ (i− 1 ≥ 1)

we get:

{I ∧B}y ← y × i; {Pi}, {Pi}i← i− 1; {I}
{I ∧ B} y ← y × i; i← i− 1; {I} .

Now, when we apply Axiom A7, we get:

{I ∧ B} y ← y × i; i← i− 1; {I}
{I} while B do begin y ← y × i; i← i− 1; end {I ∧ ¬B} .

The last couple of steps for the statements before the “while” loop can then be verified.
For line 2, using Axiom A3 with post-condition I , we get:

{(

y =
n!

n!

)

∧ (n ≥ 1)

}

i← n;

{(

y =
n!

i!

)

∧ (i ≥ 1)

}

.

The pre-condition to line 2 can be reduced to (y = 1)∧(n ≥ 1). Again, applying Axiom
A3 to line 1 yields:

{(1 = 1) ∧ (n ≥ 1)} y ← 1; {(y = 1) ∧ (n ≥ 1)}.

The pre-condition to line 1 is exactly the same to the pre-condition of our program
segment, n ≥ 1. Now, combining line 1 and line 2 using Axiom A3, we get:

{n ≥ 1} y ← 1; {(y = 1) ∧ (n ≥ 1)}, {(y = 1) ∧ (n ≥ 1)} i← 1; {I}
{n ≥ 1} line 1− 2 {I} .

Finally, combine lines 1–2 with the “while” loop, again using Axiom A3, we get:

{(n ≥ 1)} line 1− 2 {I}, {I} while− loop {y = n!}
{(n ≥ 1)} whole program− segment in Figure 15.1 {y = n!} .

This finishes our verification process or the correctness proof for the program-segment
in Figure 15.1.

15.3 OTHER APPROACHES

Besides the axiomatic approach described above, two other widely used formal verification
approaches are the weakest pre-condition approach and the functional approach. We next
introduce the basic ideas of these approaches, then discuss some limitations of all these
three approaches, and introduce the idea of model checking and other formal or semi-formal
approaches that attempt to provide only a partial verification of certain properties.


