Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Chapter 7. Testing Activities, Management, and Automation

- Major Testing Activities
- Test Management
- Testing Automation
Test Planning and Preparation

- Major testing activities:
 - Test planning and preparation
 - Execution (testing)
 - Analysis and followup

- Test planning:
 - Goal setting
 - Overall strategy

- Test preparation:
 - Preparing test cases & test suite(s)
 (systematic: model-based; our focus)
 - Preparing test procedure
Test Planning

- Goal setting and strategic planning.

- Goal setting
 - Quality perspectives of the customer
 - Quality expectations of the customer
 - Mapping to internal goals and concrete (quantified) measurement.
 - Example: customer’s correctness concerns \Rightarrow specific reliability target

- Overall strategy, including:
 - Specific objects to be tested.
 - Techniques (and related models) to use.
 - Measurement data to be collected.
 - Analysis and followup activities.
 - Key: Plan the “whole thing”!
Test Preparation

- Procedure for test preparation
 - Preparing test cases (model-based)
 - individual test cases
 - test case allocation
 - Preparing test procedure
 - basis for test procedure
 - order, flow, followup

- General concepts
 - Test run: operation instances
 - Input variable: test point
 - Input space:
 - all possible input variable values
 - Test case: static object + input to enable test runs to start-execute-finish.
Individual Test Case Preparation

- Individual test cases (micro-level) vs. test suite (macro-level)

- From multiple sources:
 - Actual runs (usage-based).
 - Implementation-based (white-box).
 - Specification-based (black-box).
 - May use similar/earlier products.
 - (direct) record and replay (less often).
 - (via) formal models (OP, CFT, BT, etc.)

- Defining input values (model \(\Rightarrow\) test cases):
 - Initial/intermediate/interactive input (expected output too?)
 - Exercise path/slice/track/etc
 - In testing terminology: sensitization
Test Cases Based on Formal Models

- Most organized, systematic test cases are derived from formal testing models:
 - Directly via newly constructed models.
 - Indirectly via exist test cases, etc.

- Model construction steps:
 - Information source identification and data collection
 - Analysis and initial model construction
 - Model validation and improvement

- Model usage:
 - Defining test cases.
 (details with individual models/techniques)
 - Indirectly in analysis/followup (Part IV).
Test Suite Preparation

- Test suite (macro-level)
 - Existing suite: what and where?
 - suitability? selection/screening?
 - Construction/generation of new ones
 - Organization & management: often hierarchical.

- Adding new test cases
 - Estimate # of new test cases
 - Specify new (individual) test cases
 - Integrate to existing test cases

- Allocation to systems/operations
 - OP-/structure-based allocation
 - Both old and new test cases in suite
Test Procedure Preparation

- Key consideration: sequencing:
 - General: simple to complex.
 - Dependency among test cases.
 - Defect detection related sequencing.
 - Sequence to avoid accident.
 - Problem diagnosis related sequencing.
 - Natural grouping of test cases.

- Other considerations:
 - Effectiveness/efficiency concerns.
 - Smooth transition between test runs.
 - Management/resource/personnel/etc.
Test Execution

- Major testing activities:
 - Test planning and preparation
 - Execution (testing)
 - Analysis and followup

- Test execution:
 - Execution planning and management
 - Related activities: important part
 - failure identification and measurement
 - other measurement
Test Execution

- General steps
 - Allocating test time (& resources)
 - Invoking test
 - Identifying system failures
 (& gathering info. for followup actions)

- Allocating test time
 - OP-based: systems/features/operations
 - Coverage concerns for critical parts
 - Coverage-based: func./struc. areas
 - Alternative: bottom-up approach
 - individual test cases ⇒ test time
 - sum-up ⇒ overall allocation
 - by OP or coverage areas
Test Execution

- Invoking test (OP-based)
 - OP \Rightarrow input variables (test points)
 - Follow probabilistic distributions (could be dynamically determined)
 - Sequence (what to test first?): COTS, product, supersystem

- Invoking test (coverage-based)
 - Organize sensitized testcases
 - Sequence \leftarrow coverage hierarchies

- Common part: Retest due to
 - Defect fix \Rightarrow verify fix
 - Code-base or feature change
 - General regression test
Test Execution

- Identifying system failures (oracle problem):
 - Similar for OP-/coverage-based
 - Analyze test output for deviations
 - Determine: deviation \neq failure?
 - Handling normal vs. failed runs
 - non-blocking failure handling

- Solving oracle problem:
 - Theoretically undecidable.
 - Some cases obvious: crash, hang, etc.
 - Practically based on heuristics:
 - product domain knowledge
 - cross-checking with other products
 - implementation knowledge & internals
 - limited dynamic consistency checking
Test Execution

- Failure observation and measurement:
 - When determining deviation = failure
 - Establish when failure occurred
 - used in reliability and other analysis
 - Failure information (e.g., ODC):
 - what/where/when/severity/etc.

- Defect handling and test measurement:
 - Defect status and change (controlled)
 - Information gathering during testing:
 - example template: Table 7.1 (p.93)
 - Followup activities:
 - fix-verification cycle
 - other possibilities (defer, invalid, etc.)
Testing Analysis and Followup

- Major testing activities:
 - Test planning and preparation
 - Execution (testing)
 - Analysis and followup

- Test analysis and followup:
 - Execution/other measurement analyzed
 - Analysis results as basis for followup
 - Feedback and followup:
 - decision making (exit testing? etc.)
 - adjustment and improvement.
Testing Analysis and Followup

- Input to analysis
 - Test execution information
 - Particularly failure cases
 - Timing and characteristics data

- Analysis and output
 - Basic individual (failure) case
 - problem identification/reporting
 - repeatable problem setup
 - Overall reliability and other analysis? (Module V)

- Followup activities
 - Defect analysis and removal (& re-test).
 - Decision making and management.
 - Test process and quality improvement.
Testing Analysis and Followup

- For individual test runs:
 - Success, continue with normal testing.
 - Failure: see below.

- Analysis and followup for failed runs:
 - Understanding the problem by studying the execution record.
 - Recreating the problem (confirmation).
 - Problem diagnosis
 - may involve multiple related runs.
 - Locating the faults.
 - Defect fixing (fault removal)
 - commonly via add/remove/modify code
 - sometimes involve design changes
 - Re-run/re-test to confirm defect fixing.
Testing Analysis and Followup

- Analysis and followup for overall testing:
 - Reliability analysis and followup.
 - Coverage analysis and followup.
 - Defect analysis and followup.
 - Focus of Part IV.

- Analyses: Different focuses:
 - Overall reliability and coverage for usage-based and coverage-based testing.
 - Detailed defect analysis.

- Followup activities: Similar.
 - Decision making and management.
 - Test process and quality improvement.
Test Management

- People’s roles/responsibilities in formal and informal testing.

- In informal testing:
 - “run-and-observe” by testers.
 - “plug-and-play” by users.
 - Informal testing with ad-hoc knowledge
 - Deceptively “easy”, but not all failures or problems easy to recognize.

- In formal testing:
 - Testers, and organized in teams.
 - Management/communication structure.
 - Role of “code owners” (multiple roles?)
 - 3rd party (IV&V) testing.
 - Career path for testers.
Test Management

• Test team organization:
 ▶ Vertical: Project oriented
 – product domain knowledge,
 – staffing/resource management hard.
 ▶ Horizontal: Task oriented
 – even distribution of staff/resources
 – lack of internal knowledge/expertise
 ▶ Mixed models might work better.

• Users and 3rd party testers:
 ▶ User involvement in beta-testing and other variations (e.g., ECI in IBM)
 ▶ IV&V with 3rd party testing/QA
 ▶ Impact of new technologies:
 – CBSE, COTS impact
 – security, dependability requirements.
Test Automation

- Basic understanding:
 - Automation needed for large systems.
 - Fully automated: Impossible.
 - Focus on specific needs/areas.

- Key issues to consider:
 - Specific needs and potentials.
 - Existing tools available/suitable?
 - related: cost/training/etc.
 - Constructing specific tools?
 - Additional cost in usage & support.
 - Impact on resource/schedule/etc.
Test Automation

- Automation by test activity areas:
 - Automated test planning & preparation.
 - Automated test execution.
 - Automated test measurement, analysis, and followup.
 - Slightly different grouping due to tightly coupling for measurement & analysis.

- Automation for test execution.
 - Many debuggers: semi-automatic.
 - Task sequencing/scheduling tools.
 - Load/test generator: script \Rightarrow runs
 - Generally easier to obtain test scripts.
Test Automation

- Automation for test planning/preparation:
 - Test planning: Human intensive not much can be done (≈ inspection and FV).
 - Test model construction: similar to above.
 - automation possible at a small scale.
 - Test case generation: focus.

- Test case generation:
 - From test model to test cases.
 - Specific to individual techniques
 - e.g., cover checklist items, paths, etc.
 - Various specific tools.
 - Key: which specific testing technique supported by the specific tool?
Test Automation

- Test measurement, analysis, and followup.
 - Analyses dictate measurements needed.
 - Most common: reliability/coverage.
 - Defect measurement needed in most cases:
 - defect tracking tools.

- Reliability analysis related tools:
 - Analysis/modeling tools.
 - Collecting execution/input/etc. data.
 - More in Chapter 22.
Test Automation

- Coverage-based testing: measuring coverage and compare to pre-set goals.

- Test coverage steps:
 - Preparation: program instrumentation.
 - Measurement step: run and collect data.
 - Analysis step: analysis for coverage.
 - Example: Fig 7.1 (p.100).

- Test coverage tools:
 - Different levels/definitions of coverage ⇒ different tools.
 - Example tools:
 - McCabe: execution (control flow) path
 - S-TCAT: functional coverage
Summary

- Test activities:
 - Planning & preparation: focus of Part II.
 - Execution & measurement: common.
 - Analysis & followup: focus of Part IV.

- Test management:
 - Different roles and responsibilities.
 - Good management required.

- Test automation:
 - Set realistic expectations.
 - Specific areas for automation, esp. in execution, measurement, and analysis.