Software Quality Engineering:
Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Chapter 14. Inspection

- Basic Concept and Generic Process
- Fagan Inspection
- Other Inspection and Related Activities
- Other Issues
QA Alternatives

• Defect and QA:
 ▶ Defect: error/fault/failure.
 ▶ Defect prevention/removal/containment.
 ▶ Map to major QA activities

• Defect prevention:
 Error blocking and error source removal.

• Defect removal:
 ▶ Inspection – this chapter.
 ▶ Testing, etc.

• Defect containment: Fault tolerance and failure containment (safety assurance).
Inspection as Part of QA

- Throughout the software process
 - Coding phase: code inspection
 - Design phase: design inspection
 - Inspection in other phases and at transitions from one phase to another

- Many different software artifacts:
 - program code, typically
 - requirement/design/other documents
 - charts/models/diagrams/tables/etc.

- Other characteristics:
 - People focus.
 - Not waiting for implemented system.
 - Complementary to other QA activities.
Generic Process and Variations

- Generic process/steps: Fig 14.1 (p.238)
 1. Preparation (individual)
 2. Collection (group/meeting)
 3. Repair (followup)

- Inspection Process Variations:
 - Team organization and size (who?)
 - Inspection objects and objectives?
 - Number/coordination of multiple sessions?
 - Collection technique?
 - Detect (& classify/analyze) defects?
 - Use of post-collection feedback?
 - Mostly determined at preparation step
Fagan Inspection

- General description
 - Earliest, Fagan at IBM
 - Lead to other variations
 - Generic process and steps

- Six steps of Fagan inspection:
 1. Planning
 2. Overview (1-to-n meeting)
 3. Preparation (individual inspection)
 4. Inspection (n-to-n meeting)
 5. Rework
 6. Follow-up

- Mapping to generic inspection process in Fig 14.1 (p.238)
Fagan Inspection

1. Planning
 ▶ Entry criteria: what to inspect
 ▶ Team size: about 4 persons
 ▶ Developers/testers from similar projects
 ▶ Effectiveness concerns (assumptions)
 ▶ Inspectors not authors

2. Overview
 ▶ Author-inspectors meeting
 ▶ General background information
 – functional/structural/info., intentions
 ▶ Assign individual tasks:
 – coverage of important areas
 – moderate overlap
Fagan Inspection

3. Preparation or individual inspection

- Independent analysis/examination
- Code as well as other documents
- Individual results:
 - questions/guesses
 - potential defects

4. Inspection (generic: collection)

- Meeting to collect/consolidate individual inspection results
- Team leader/meeting moderator (1)
- Reader/presenter: summarize/paraphrase for individual pieces (assignment)
- Defect identification, but not solutions, to ensure inspection effectiveness
- No more than 2 hours
- Inspection report
Fagan Inspection

5. Rework
 ▶ Author’s response
 ▶ Defect fixing (solutions)

6. Follow-up
 ▶ Resolution verification by moderator
 ▶ Re-inspection?

- Fagan inspection in practice
 ▶ Widely used in industry
 ▶ Evaluation studies
 ▶ Variations and other inspections
Fagan Inspection: Findings

- Importance of preparation:
 - Most defect detected
 - Meetings to consolidate defects
 - ⇒ alternatives focusing on preparation.

- Other important findings:
 - Important role of the moderator
 - Team size and #sessions tailored to env.
 - Prefer systematic detection techniques to ad-hoc ones
 - More use of inspection feedback/analysis
Other Inspection Methods

- Variations to Fagan inspection: size/scope and formality variations.

- Alternative inspection techniques/processes:
 - Two-person inspection
 - Meetingless inspections
 - Gilb inspection
 - Phased inspections
 - N-fold inspections
 - Informal check/review/walkthrough
 - Active design reviews
 - Inspection for program correctness
 - Code reading
 - Code reading with stepwise abstraction
Reduced Size/Scope Inspection

- Two-person inspection
 - Fagan inspection simplified
 - Author-inspector pair
 - reciprocal: mutually beneficial
 - Smaller scale program

- Meetingless inspections
 - Importance of preparation (indiv. insp.)
 (most defects found during preparation)
 - Empirical evidence
 - 1-on-1 instead of team meetings
 (or other feedback mechanisms)
Gilb Inspection (Expanded Fagan)

- **Key:** A “process brainstorming” meeting
 - root cause analysis
 - right after inspection meeting
 - parallel to edit (rework)
 - aim at preventive actions/improvement

- **Other characteristics**
 - Clearly identified input, checklists/rules extensively used
 - Output include change request and suggested process improvement, in addition to inspected documents.
 - Team size: 4-6 people.
 - More emphasis on feedback loop: more closely resemble our SQE process (Fig 5.1, p.54)
Other Expanded Fagan Inspections

• Phased inspections
 ▶ Expand Fagan inspection
 ▶ Multiple phases/meetings
 ▶ Each on a specific area/problem-type
 ▶ Dynamic team make-up

• N-fold inspections
 ▶ Idea similar to NVP
 ▶ N parallel inspections, 1 moderator
 ▶ Duplications ⇒ cost↑
 ▶ Discussed in connection to NVP (Ch.16)
Informal Inspection

- Desk check (self conducted):
 - Should focus on conceptual problems
 - Use tools for problems with syntax/spelling/format/etc.

- Informal review (by others):
 - Similar to desk check, but by others
 - Benefit from independent/orthogonal views
 - Group reviews for phase transitions

- Walkthroughs:
 - More organized, but still informal
 - Leading role of author/moderator
 - Less preparation by other participants than in inspection
Formal Inspection: Code Reading

- Code reading
 - Focus on code
 - Optional meetings

- Code reading by stepwise abstraction
 - Variation to code reading
 - A formalized code reading technique
 - Top-down decomposition and bottom-up abstraction
 - Empirical support for the program comprehension model
 - Fig 14.2 (p.245)
 - Recent evidence of effectiveness
Formal Inspection: ADR & Correctness

- Active design reviews (ADR)
 - Another formal inspection, for designs
 - Inspector active vs. passive
 - Author prepares questionnaires
 - More than one meeting
 - Scenario based (questionnaires)
 - Overall ADR divided into small ones
 - 2-4 persons (for each smaller ADR)

- Inspection for program correctness
 - Correctness (vs. questionnaire) of:
 - topology (decomposition, hierarchy)
 - algebra (equivalence of refinements)
 - invariance (variable relations)
 - robustness (error handling)
 - Close to formal verification
Extending Inspection: Analysis

• Inspection as analysis
 ▶ Program/document/etc. analysis
 ▶ Inspection as statics analysis
 ▶ Testing as dynamic analysis

• Other analyses
 ▶ Static: algorithm, decision table, boundary value, control flow, data flow, etc.
 ▶ Dynamic: symbolic execution, simulation, prototyping, timing, in-field execution, etc.
 ▶ Covered in SQE (various chapters), with pointers in Section 14.3.5.
 ▶ Detailed reference: Wallace et al 1996 (NIST Special Publication 500-234) available online
Defect Detection Techniques

- Ad-hoc vs. systematic ones below: checklist-/scenario-/abstraction-based.

- Checklist-based inspection:
 - Similar to testing checklists (Ch.8).
 - Basic types: artifact-/property-based.

- Scenario-based inspection:
 - Similar to usage-based testing.
 - Scenarios ties multiple components.
 - More a usage/external view.
 - Suitable for OOS.

- Abstraction-based inspection: Similar to code reading with stepwise abstraction.
Implementation and Effectiveness

- Implementation support:
 - Process and communication support
 - Repository management tools
 - Defect tracking and analysis as followup
 - Still human intensive

- Effectiveness studies
 - Measurement: defect or effort
 - Defect detection technique important
 - Inspector skills/expertise also important
 - Other factors, less than unanimous
 - Many individual variations
Summary

- Key advantages:
 - Wide applicability and early availability
 - Complementary to testing/other QA
 - Many techniques/process to follow/adapt
 - Effective under many circumstances

- Key limitations:
 - Human intensive
 - Dynamic/complex problems and interactions: Hard to track/analyze.
 - Hard to automate.

- Comparison to other QA: Chapter 17.