
Software Quality Engineering Slide (Ch.18) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 18. Feedback Loop and

Activities for Quantifiable Quality

Improvement

• Feedback Loop and Overall Mechanism

• Monitoring and Measurement

• Analysis and Feedback

• Tool and Implementation Support

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 2

Importance of Feedback Loop

• All QA activities covered in Part II and Part

III need additional support:

. Planning and goal setting (Chapter 5)

. Management via feedback loop:

– When to stop?

– Adjustment and improvement, etc.

– All based on assessments/predictions

• Feedback loop for quantification/improvement:

. Focus of Part IV chapters

. Ch.18: mechanism and implementation.

. Ch.19: models and measurements.

. Ch.20: defect analyses and techniques.

. Ch.21: risk identification techniques.

. Ch.22: software reliability engineering.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 3

QE Activities and Process Review

• Major activities:

. Pre-QA planning (Ch.5).

. QA (Part II and Part III).

. Post-QA analysis & feedback – Part IV

(maybe parallel instead of “post-”)

• Overall process: Fig 5.1 (p.54)

– Software quality engineering (SQE)

• Feedback loop zoom-in: Fig 18.1 (p.304)

. Multiple measurement sources.

. Many types of analysis performed.

. Multiple feedback paths.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 4

Feedback Loop Related Activities

• Monitoring and measurement:

. defect monitoring ∈ process management.

. defect measurement ∈ defect handling.

. many other related measurements.

• Analysis modeling:

. Historical baselines and experience.

. Choosing models and analysis techniques.

. Focus on defect/risk/reliability analyses.

. Goal: assessment/prediction/improvement.

• Feedback and followup:

. Frequent feedback: assessment/prediction.

. Possible improvement areas identified.

. Overall management and improvement.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 5

Quality Monitoring and Measurements

• Quality monitoring needs:

. Quality as a quantified entity over time.

. Able to assess, predict, and control.

. Various measurement data needed.

. Some directly in quality monitoring.

. Others via analyses to provide feedback.

• Direct quality measurements:

. Result, impact and related info.

– e.g., success vs. failure

– classification info. (e.g., ODC)

. Defect information: directly monitored.

– additional defect analysis in Ch. 19.

. Mostly used in quality monitoring.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 6

Indirect Quality Measurements

• Indirect quality measurements: Why?

. Other quality measurements (reliability)

need additional analyses/data.

(See reliability definition in Ch.22.)

. Unavailability of direct quality measure-

ments early in the development cycle

⇒ early (indirect) indicators.

. Used to assess/predict/control quality.

(to link to or affect various direct quality

measurements)

• Types of indirect quality measurements:

. Environmental measurements.

. Product internal measurements.

. Activity measurements.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 7

Indirect Measurements: Environment

• Process characteristics

. Entities and relationships

. Preparation, execution and followup

. Techniques used

• People characteristics

. Skills and experience

. Roles: planners/developers/testers

. Process management and teams

• Product characteristics

. Product/market environment

. Hardware/software environment

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 8

Indirect Measurements: Internal

• Product internal measurements:

most studied/understood in SE

• Software artifacts being measured:

. Mostly code-related

. Sometimes SRS, design, docs etc.

• Product attributes being measured:

. Control: e.g., McCabe complexity

. Data: e.g., Halstead metrics

. Presentation: e.g., indentation rules

• Structures:

. Unstructured: e.g., LOC

. Structured: examples above

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 9

Indirect Measurements: Activity

• Execution/activity measurements:

. Overall: e.g., cycle time, total effort.

. Phased: profiles/histograms.

. Detailed: transactions in SRGMs.

• Testing activity examples:

. Timing during testing/usage

. Path verification (white-box)

. Usage-component mapping (black-box)

. Measurement along the path

• Usage of observations/measurements:

observation-based and predictive models

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 10

Immediate Followup and Feedback

• Immediate (without analyses): Why?

. Immediate action needed right away:

– critical problems ⇒ immediate fixing

– most other problems: no need to wait

. Some feedback as built-in features in

various QA alternatives and techniques.

. Activities related to immediate actions.

• Testing activity examples:

. Shifting focus from failed runs/areas.

. Re-test to verify defect fixing.

. Other defect-related adjustments.

• Defect and activity measurements used.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 11

Analyses, Feedback, and Followup

• Most feedback/followup relies on analyses.

• Types of analyses:

. Product release decision related.

. For other project management decisions,

at the phase or overall project level.

. Longer-term or wider-scope analyses.

• Types of feedback paths:

. Shorter vs. longer feedback loops.

. Frequency and time duration variations.

. Overall scope of the feedback.

. Data source refinement.

. Feedback destinations.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 12

Analysis for Product Release Decisions

• Most important usage of analysis results

. Prominent in Fig 5.1 and Fig 18.1.

. Related to: “when to stop testing?”

• Basis for decision making:

. Without explicit quality assessment:

– implicit: planned activities,

– indirect: coverage goals,

– other factors: time/$-based.

. With explicit quality assessment:

– failure-based: reliability,

– fault-based: defect count & density.

• Criteria preference:

reliability – defect – coverage – activity.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 13

Analyses for Other Decisions

• Transition from one (sub-)phase to another:

. Later ones: similar to product release.

. Earlier ones: reliability undefined

– defects – coverage – activity,

– inspection and other early QA

• Other decisions/management-activities:

. Schedule adjustment.

. Resource allocation and adjustment.

. Planning for post-release support.

. Planning for future products or updates.

• These are product-level or sub-product-level

decisions and activities.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 14

Other Feedback and Followup

• Other (less frequent) feedback/followup:

. Goal adjustment (justified/approved).

. Self-feedback (measurement & analysis)

– unsuitable measurements and models?

– SRE measurement example in IBM.

. Longer term, project-level feedback.

. May even carry over to followup projects.

• Beyond a single-project duration/scope:

. Future product quality improvement

– overall goal/strategy/model/data,

– especially for defect prevention.

. Process improvement.

. More experienced people.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 15

Feedback Loop Implementation

• Key question: sources and destinations.

(Analysis and modeling activity at center.)

• Sources of feedback loop = data sources:

. Result and defect data:

– the QA activities themselves.

. Activity data:

– both QA and development activities.

. Product internal data: product.

(produced by development activities)

. Environmental data: environment.

• Additional sources of feedback loop:

. From project/QA planning.

. Extended environment: measurement data

and models beyond project scope.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 16

Feedback Loop Implementation

• Feedback loop destinations:

. At different duration/scope levels.

. Immediate feedback to current develop-

ment activities (locally).

. Short-term or sub-project-level feedback:

– most of the feedback/followup in Ch.18.

– transition, schedule, resource,

– destination: development activities.

. Medium-term or project-level feedback:

– overall project adjustment and release

– destination: major blocks in Fig 5.1

. Longer-term or multi-project feedback:

– to external destinations

• Overall implementation: Fig 18.2 (p.315)

. Originated from Fig 5.1

. Via intermediate refinement in Fig 18.1

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 17

Implementation Support Tools

• Type of tools:

. Data gathering tools.

. Analysis and modeling tools.

. Presentation tools.

• Data gathering tools:

. Defects/direct quality measurements:

– from defect tracking tools.

. Environmental data: project db.

. Activity measurements: logs.

. Product internal measurements:

– commercial/home-build tools.

. New tools/APIs might be needed.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 18

Implementation Support Tools

• Analysis and modeling tools:

. Dedicated modeling tools:

– e.g., SMERFS and CASRE for SRE

. General modeling tools/packages:

– e.g., multi-purpose S-Plus, SAS.

. Utility programs often needed for data

screening and processing.

• Presentation tools:

. Aim: easy interpretation of feedback

⇒ more likely to act on.

. Graphical presentation preferred.

. Some “what-if”/exploration capability.

Jeff Tian, Wiley-IEEE/CS 2005

Software Quality Engineering Slide (Ch.18) 19

Strategy for Tool Support

• Using existing tools ⇒ cost↓:

. Functionality and availability/cost.

. Usability.

. Flexibility and programmability.

. Integration with other tools.

• Tool integration issues:

. Assumption: multiple tools used.

(All-purpose tools not feasible/practical.)

. External rules for inter-operability,

– common data format and repository.

. Multi-purpose tools.

. Utilities for inter-operability.

• IBM example: Fig 18.3 (p.319).

Jeff Tian, Wiley-IEEE/CS 2005

