Chapter 19. Quality Models and Measurements

- Types of Quality Assessment Models.
- Comparing Quality Assessment Models.
- Data Requirements and Measurement
- Measurement and Model Selection.
QA Data and Analysis

● Generic testing process:
 ▶ Test planning and preparation.
 ▶ Execution and measurement.
 ▶ Test data analysis and followup.
 ▶ Related data \Rightarrow quality \Rightarrow decisions

● Other QA activities:
 ▶ Similar general process.
 ▶ Data from QA/other sources (Ch.18).
 ▶ Models used in analysis and followup:
 – provide timely feedback/assessment
 – prediction, anticipating/planning
 – corrective actions \Rightarrow improvement
QA Models and Measures

- General approach
 - Adapt GQM-paradigm.
 - Quality: basic concept and ideas.
 - Compare models ⇒ taxonomy.
 - Data requirements ⇒ measurements.
 - Practical selection steps.
 - Illustrative examples.

- Quality attributes and definitions:
 - Q models: data ⇒ quality
 - Correctness vs. other attributes
 - Our definition/restriction:
 - being defect-free or of low-defect
 - Examples: reliability, safety,
 defect count/density/distribution/etc.
Quality Analysis

- Analysis and modeling:
 - Quality models: data ⇒ quality
 - a.k.a. quality assessment models or quality evaluation models
 - Various models needed
 - Assessment, prediction, control
 - Management decisions
 - Problematic areas for actions
 - Process improvement

- Measurement data needed
 - Direct quality measurements: success/failure (& defect info)
 - Indirect quality measurements:
 - activities/internal/environmental.
 - Indirect but early quality indicators.
 - All described in Chapter 18.
Quality Models

- Practical issues:
 - Applicability vs. appl. environment
 - Goal/Usefulness: information/results?
 - Data: measurement data required
 - Cost of models and related data

- Type of quality models
 - Generalized: averages or trends
 - overall, segmented, and dynamic
 - Product-specific:
 - semi-customized: product history
 - observation-based: observations
 - measurement-driven: predictive
 - Model taxonomy: Fig 19.1 (p.324).
 - Relating to issues above
Generalized Models: Overall

- Key characteristics
 - Industrial averages/patterns
 ⇒ (single) rough estimate.
 - Most widely applicable.
 - Low cost of use.

- Examples: Defect density.
 - Estimate total defect with sizing model.
 - Variation: QI in IBM
 (counting in-field unique defect only)

- Non-quantitative overall models:
 - As extension to quantitative models.
 - Examples: 80:20 rule, and other general observations.
Generalized Models: Segmented

- Key characteristics:
 - Estimates via product segmentation.
 - Model: segment → quality.
 - Multiple estimates provided.

- Examples:
 - Table 19.1 (p.326): reliability levels.
 - Segmented defect density model (derived from previous overall model)

- Other applications.
 - Commonly used in software estimation.
 - Example: COCOMO models.
Generalized Models: Dynamic

- Key characteristics:
 - Overall/average trend over time.
 - Often expressed as a mathematical function or an empirical curve.

- Example: Putnam
 - Rayleigh curve for failure rate r:
 $$ r = 2Bate^{-at^2} $$
 - Other variations in literature.
 - Similar: reliability growth trend.

- Combined models possible, e.g., segmented dynamic models.
Product-Specific Models (PSM)

- Product-specific models (PSMs):
 - Product-specific info. used (vs. none used in generalized models)
 - Better accuracy/usefulness at cost
 - Three types:
 - semi-customized
 - observation-based
 - measurement-driven predictive

- Connection to generalized models (GMs):
 - Customize GMs to PSMs with new/refined models and additional data.
 - Generalize PSMs to GMs with empirical evidence and general patterns.
 - Illustrated in Fig 19.1 (p.324).
PSM: Semi-Customized

• Semi-customized models:
 ▶ Project level model based on history.
 ▶ Data captured by phase.
 ▶ Both projections and actual.
 ▶ Linear extrapolation.
 ▶ Example: DRM in Table 19.2 (p.327)

• Related examples:
 ▶ Defect dynamics model in Ch.20, as extension to DRM above.
 ▶ ODC defect analyses in Ch.20:
 – 1-way distribution/trend analysis
 – 2-way analysis of interaction.
PSM: Observation-Based

- Observation-based models:
 - Detailed observations and modeling
 - Software reliability growth models
 - Other reliability/safety models

- Model characteristics
 - Focus on the effect/observations
 - Assumptions about the causes
 - Assessment-centric
 - Example: Goel-Okumoto NHPP SRGM
 - functional relation: \(m(t) = N(1 - e^{-bt}) \)
 - observed failures over time
 - curve fitting
 - reliability assessment/prediction
 - management decisions: exit criteria
PSM: Predictive

- Measurement-driven predictive models
 - Establish predictive relations
 - Modeling techniques:
 - regression, TBM, NN, OSR etc.
 - Risk assessment and management

- Model characteristics:
 - Response: chief concern
 - Predictors: observable/controllable
 - Linkage quantification
 - Example: Table 19.3 (p.329)
 - tree-based defect modeling
 - substantially different high-risk areas
 - identification and remedial actions
Model Summary and Application

- Summary: Table 19.4 (p.329)
 - Primary results/usefulness.
 - Applicability.

- Model generalization or customization in connection with model applications.

- Applications:
 - \(\neg \) data \(\Rightarrow \) GMs as early choices.
 - Data arrival \(\Rightarrow \) phase in PSMs:
 - special case: historical data
 \(\Rightarrow \) semi-customized models early.
 - Model customization within.
 - Model generalization: data out.
Relating Models to Measurements

- Data required by quality models
 - Direct quality measurements
 - to be assessed/predicted/controlled
 - Indirect quality measurements
 - means to achieve the goal
 - environmental, activity, product-internal
 - All data covered in Chapter 18.
 - Data requirement by models:
 summarized in Table 19.5 (p.331)

- Data requirement of GMs:
 - Quality averages/patterns: \(\overline{Q} \)
 - No measurements from current project
Relating Models to Measurements

• Data requirement of PSMs:
 ▶ All use direct quality measurements: Q
 – related to other measurements: M
 – as relations: $Q \sim M$
 – or as functions: $Q = f(M)$
 ▶ Measurement-driven models:
 – $M =$ all measurements
 ▶ Semi-customized models:
 – $M =$ environmental measurements
 ▶ Observation-based models:
 – $M =$ activity measurements
 ▶ Various other secondary uses

• Can also be examined from the direction of measurements-models forward links.

• Relating models to measurements:
 Fig 19.3 (p.332) – chapter summarized.
Model/Measurement Selection

- Customize GQM into 3-steps

- Step 1: Quality goals
 - Restricted, not general goals

- Step 2: Quality models
 - Model characteristics/taxonomy
 - Model applicability/usefulness
 - Data requirement/affordability

- Step 3: Quality measurements
 - Model-measurements relations
 - Detailed model information
Selection Example A

- **Goal**: rough quality estimates

- **Situation 1**:
 - No product specific data
 - Industrial averages/patterns
 - Commercial tools: SLIM etc.
 - Product planning stage
 - Defect profile in lifecycle
 - Use generalized models

- **Situation 2**:
 - Data from related products
 - DRM for legacy products
 - ODC profile for IBM products
 - Semi-customized models
Selection Example B

- Goal: customer-view of quality in system testing

- Quality model:
 - SRGMs: info. about reliability
 - Assessment: customer-view
 - Prediction: project management
 - Decisions: exit criteria
 - Affordability: data and modeling

- Quality measurements:
 - Reliability: failure-free operation for a given time under a specific environment
 - Result: success/failure measurement
 - Time measurement: reflect activity
 - Fig 19.4 (p.335): time = transactions
 - Environment: implicitly assumed
Selection Example C

- Goal: testing process/quality improvement

- Quality model: Fig 19.5 (p.336)
 ▶ Inadequacy of SRGMs
 ▶ TBRM: improvement focus
 - what’s wrong: risk identification
 - what to do: remedial actions
 ▶ Affordability: data and modeling

- Quality measurements:
 ▶ Result: success/failure measurement
 ▶ Timing info.: time-domain analysis
 ▶ Input state: input-domain analysis
 ▶ Data attributes: Table 19.6 (p.336)
Summary and Perspectives

- Practical need for quality measurement and model selection

- Viable approach
 - Model characteristics ⇒ taxonomy
 - Model data requirement:
 - different types of quality measurements
 - Selection steps: customized GQM
 - Viability: examples

- Perspective and future work:
 - Refined taxonomy
 - Relating models to measurements:
 - more details and specific info.
 - Lifecycle activities and support
 - Automation?