Chapter 20. Defect Classification and Analysis

- General Types of Defect Analyses.

- ODC: Orthogonal Defect Classification.

- Analysis of ODC Data.
Defect Analysis

- **Goal**: (actual/potential) defect↓ or quality↑ in current and future products.

- **General defect analyses**:
 - Questions: what/where/when/how/why?
 - Distribution/trend/causal analyses.

- **Analyses of classified defect data**:
 - Prior: defect classification.
 - Use of historical baselines.
 - Attribute focusing in 1-way and 2-way analyses.
 - Tree-based defect analysis (Ch.21).
Defect in Quality Data/Models

- Defect data ⊆ quality measurement data:
 - As part of direct Q data.
 - Extracted from defect tracking tools.
 - Additional (defect classification) data may be available.

- Defect data in quality models:
 - As results in generalized models (GMs).
 - As r.v. (response/independent) variable in product specific models (PSMs).
 - semi-customized models ≈ GMs,
 - observation-based: r.v. in SRGMs,
 - predictive: r.v. in TBDMs.
 - (SRGMs/TBDMs in Ch.22/21.)
General Defect Analysis

- General defect analyses: Questions
 - What? identification (and classification).
 - type, severity, etc.,
 - even without formal classification.
 - Where? distribution across location.
 - When? discovery/observation
 - what about when injection? harder
 - pre-release: more data
 - post-release: more meaningful/sensitive
 - How/why? related to injection
 ⇒ use in future defect prevention.

- General defect analyses: Types
 - Distribution by type or area.
 - Trend over time.
 - Causal analysis.
 - Other analysis for classified data.
Defect Analysis: Data Treatment

- Variations of defect data:
 - Error/fault/failure perspective.
 - Pre-/post-release.
 - Unique defect?
 - Focus here: defect fixes.

- Why defect fixes (DF):
 - Propagation information.
 - Close ties to effort (defect fixing).
 - Pre-release: more meaningful.
 (post release: each failure occurrence.)
Defect Distribution Analysis

- What: Distribution over defect types.
 - Ties to quality views/attributes (Ch.2).
 - Within specific view: types/sub-types.
 - Defect types \leftrightarrow product’s “domain”.
 - IBM example: CUPRIMDSO.

- Web example: Table 20.1 (p.341)
 - Defect = “error” in web community.
 - Dominance of type E “missing files”.
 - Type A error: further analysis.
 - All other types: negligible.
Defect Distribution Analysis

- Where: Distribution over locations.
 - Common: by product areas
 - sub-product/module/procedure/etc.
 - IBM-LS: Table 20.3 (p.342)
 - IBM-NS: Table 20.4 (p.343)
 - common pattern: skewed distribution
 - Extension: by other locators
 - e.g., types of sources or code
 - example of web error distribution
 - Table 20.2 (p.342) by file type
 - again, skewed distribution!

- Important observation:
 - Skewed distribution, or 80:20 rule
 ⇒ importance of risk identification for effective quality improvement
 - Early indicators needed!
 (Cannot wait after defect discoveries.)
Defect Trend Analysis

- Trend as a continuous function:
 - Similar to Putnam model (Ch.19)
 - but customized with local data
 - Other analysis related to SRE
 - defect/effort/reliability curves
 - more in Ch.22 and related references.
 - Sometimes discrete analysis may be more meaningful (see below).

- Defect dynamics model: Table 20.5 (p.344)
 - Important variation to trend analysis.
 - Defect categorized by phase.
 - Discovery (already done).
 - Analysis to identify injection phase.
 - Focus out-of-phase/off-diagonal ones!
Defect Causal Analysis

• Defect causal analyses: Types
 ▶ Causal relation identified:
 – error-fault vs fault-failure
 – works backwards
 ▶ Techniques: statistical or logical.

• Root cause analysis (logical):
 ▶ Human intensive.
 ▶ Good domain knowledge.
 ▶ Fault-failure: individual and common.
 ▶ Error-fault: project-wide effort focused on pervasive problems.

• Statistical causal analysis:
 \(\approx \) risk identification techniques in Ch.21.
ODC: Overview

- Development
 - Chillarege et al. at IBM
 - Applications in IBM Labs and several other companies
 - Recent development and tools

- Key elements of ODC
 - Aim: tracking/analysis/improve
 - Approach: classification and analysis
 - Key attributes of defects
 - Views: both failure and fault
 - Applicability: inspection and testing
 - Analysis: attribute focusing
 - Need for historical data
ODC: Why?

- Statistical defect models:
 - Quantitative and objective analyses.
 - SRGMs (Ch.22), DRM (Ch.19), etc.
 - Problems: accuracy & timeliness.

- Causal (root cause) analyses:
 - Qualitative but subjective analyses.
 - Use in defect prevention.

- Gap and ODC solution:
 - Bridge the gap between the two.
 - Systematic scheme used.
 - Wide applicability.
ODC: Ideas

- Cause-effect relation by type:
 - Different types of faults.
 -导致不同的失败。
 -需要缺陷分类。
 -多个属性描述缺陷。

- Good measurement:
 - Orthogonality (independent view).
 -一致性跨越阶段。
 -一致性跨越产品。

- ODC process/implementation:
 - Human classification.
 - Analysis method and tools.
 - Feedback results (and followup).
ODC: Theory

- Semantic classification:
 - Defect classes for a product
 - Can be related to process
 - Can explain progress
 - Akin to event measurement
 - Compare to opinion-based classification (e.g., where-injected)
 - Sufficient condition:
 - spanning set over process
 - formed by defect attributes

- Classification for cause-effect or views:
 - Cause/fault: type, trigger, etc.
 - Effect/failure: severity, impact, etc.
 - Additional causal-analysis-related: source, where/when injected.
 - Sub-population: environment data.
ODC Attributes: Effect/Failure-View

- **Defect trigger:**
 - Associated with verification process
 - similar to test case measurement
 - collected by testers
 - Trigger classes
 - product specific
 - black box in nature
 - pre/post-release triggers

- **Other attributes:**
 - Impact: e.g., IBM's CUPRIMDSO.
 - Severity: low-high (e.g., 1-4).
 - Detection time, etc.

- **Concrete example:** Table 20.6 (p.347)
ODOC Attributes: Cause/Fault-View

- Defect type:
 - Associated with development process.
 - Missing or incorrect.
 - Collected by developers.
 - May be adapted for other products.

- Other attributes:
 - Action: add, delete, change.
 - Number of lines changed, etc.

- Concrete example: Table 20.6 (p.347)
ODC Attributes: Cause/Error-View

- Key attributes:
 - Defect source: vendor/base/new code.
 - Where injected.
 - When injected.

- Characteristics:
 - Associated to additional causal analysis.
 - (May not be performed.)
 - Many subjective judgment involved
 (evolution of ODC philosophy)

- Concrete example: Table 20.6 (p.347)
 (Only rough “when”: phase injected.)
Adapting ODC for Web Error Analysis

- Continuation of web testing/QA study.

- Web error = observed failures, with causes already recorded in access/error logs.

- Key attributes mapped to ODC:
 - Error type = defect impact.
 - types in Table 20.1 (p.341)
 - response code (4xx) in access logs
 - Referring page = defect trigger.
 - individual pages with embedded links
 - classified: internal/external/empty
 - focus on internal problems
 - Missing file type = defect source
 - different fixing actions to follow.

- May include other attributes for different kinds of web sites.

Jeff Tian, Wiley-IEEE/CS 2005
ODC Analysis: Attribute Focusing

- General characteristics
 - Graphical in nature
 - 1-way or 2-way distribution
 - Phases and progression
 - Historical data necessary
 - Focusing on big deviations

- Representation and analysis
 - 1-way: histograms
 - 2-way: stack-up vs. multiple graphics
 - Support with analysis tools
ODC Analysis Examples

- 1-way analysis: Fig 20.1 (p.349)
 - Defect impact distribution for an IBM product.
 - Uneven distribution of impact areas!
 ⇒ risk identification and focus.

- 1-way analysis: Fig 20.2 (p.350)
 - Web error trend analysis.
 - Context: compare to usage (reliability).

- 2-way analysis: Table 20.7 (p.351)
 - Defect impact-severity analysis.
 - IBM product study continued.
 - Huge contrast: severity of reliability and usability problems!
ODC Process and Implementation

- **ODC process:**
 - Human classification
 - defect type: developers,
 - defect trigger and effect: testers,
 - other information: coordinator/other.
 - Tie to inspection/testing processes.
 - Analysis: attribute focusing.
 - Feedback results: graphical.

- **Implementation and deployment:**
 - Training of participants.
 - Data capturing tools.
 - Centralized analysis.
 - Usage of analysis results.
Linkage to Other Topics

- Development process
 - Defect prevention process/techniques.
 - Inspection and testing.

- Testing and reliability:
 - Expanded testing measurement
 - Defects and other information:
 - Environmental (impact)
 - Test case (trigger)
 - Causal (fault)
 - Reliability modeling for ODC classes