Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Chapter 21. Risk Identification for Quantifiable Quality Improvement

- Basic Ideas and Concepts
- Traditional Statistical Techniques
- Newer/More Effective Techniques
- Tree-Based Analysis of ODC Data
Risk Identification: Why?

- Observations and empirical evidences:
 - 80:20 rule: non-uniform distribution:
 - 20% of the modules/parts/etc. contribute to
 - 80% of the defects/effort/etc.
 - implication: non-uniform attention
 - risk identification
 - risk management/resolution

- Risk Identification in SQE:
 - 80:20 rule as implicit hypothesis
 - focus: techniques and applications
Risk Identification: How?

- Qualitative and subjective techniques:
 - Causal analysis
 - Delphi and other subjective methods

- Traditional statistical techniques:
 - Correlation analysis
 - Regression models:
 - linear, non-linear, logistic, etc.

- Newer (more effective) techniques:
 - Statistical: PCA, DA, TBM
 - AI-based: NN, OSR
 - Focus of our Chapter.
Risk Identification: Where?

- 80% or target:
 - Mostly quality or defect
 (most of our examples also)
 - Effort and other external metrics
 - Typically directly related to goal
 - Resultant improvement

- 20% or contributor:
 - 20%: risk identification!
 - Understand the link
 - Control the contributor:
 - corrections/defect removal/etc.
 - future planning/improvement
 - remedial vs preventive actions
Traditional Technique: Correlation

• Terminology:
 ▶ r.v.: random variables
 ▶ i.v.: independent (random) variable
 – also called predictor (variable)
 ▶ d.v.: dependent (random) variable
 – also called response (variable)
 ▶ observations and distribution

• Statistical distributions:
 ▶ 1d: normal, exponential, binomial, etc.
 ▶ 2d: independent vs. correlated
 ▶ covariance, correlation (coefficient)
Traditional Technique: Correlation

- Correlation coefficient:
 - ranges between -1 and 1
 - positive: move in same direction
 - negative: move in opposite direction
 - 0: not correlated (independent)

- Correlation analysis:
 - use correlation coefficient
 - linear (Pearson) correlation vs.
 non-parametric (Spearman) correlation
 - based on measurement type/distribution:
 - non-normal distribution
 - ordinal measurement etc.
Traditional Technique: Correlation

- Correlation analysis: applications
 - understand general relationship
 - e.g., complexity-defect correlation
 - risk identification also
 - cross validation (metrics etc.)

- Correlation analysis: assessment
 - only partially successful
 - low correlation, then what?
 - data skew: 0-defect example
 - uniform treatment of data

⇒ Other risk identification techniques needed.
Traditional Technique: Regression

- Regression models:
 - as generalized correlation analysis
 - n i.v. combined to predict 1 d.v.
 - forms of prediction formula
 \Rightarrow diff. types of regression models

- Types of regression models:
 - linear: linear function
 $$y = \alpha_0 + \alpha_1 x_1 + \ldots + \alpha_n x_n + \epsilon$$
 - log-linear: linear after log-transformation
 - non-linear: non-linear function
 - logistic: represent presence/absence of categorical variables
Traditional Technique: Regression

- Regression analysis: applications
 - similar to correlation analysis
 - multiple attribute data

- Regression analysis: assessment
 - only partially successful
 - similar to correlation analysis
 - often marginally better (R-sqr vs c.c.)
 - same kind of problems
 - data transformation problem
 - synthesized metrics \sim regression model?

\Rightarrow Other risk identification techniques needed.
New Techniques

- New statistical techniques:
 - PCA: principal component analysis
 - DA: discriminant analysis
 - TBM: tree-based modeling

- AI-based new techniques:
 - OSR: optimal set reduction.
 - Abductive-reasoning, etc.

- Focus of our Chapter.
New Techniques: PCA & DA

- Not really new techniques, but rather new applications in SE.

- PCA: principal component analysis
 - Idea of linear transformation.
 - PCA to reduce dimensionality.
 - Effectively combined with DA and other techniques (NN later).

- DA: discriminant analysis
 - Discriminant function
 - Risk id as a classification problem
 - Combine with other techniques
New Techniques: PCA & DA

- PCA: why?
 - Correlated i.v.’s ⇒ unstable models
 - Extreme case:
 - linearly dependent ⇒ singularity
 - linear transformation (PCA) ⇒
 uncorrelated PCs (or domain metrics)

- PCA: how?
 - Covariance matrix: Σ
 - Solve $|\Sigma - \Lambda| = 0$ to obtain eigenvalues
 λ_j along the diagonal for the diagonal matrix Λ
 - λ_j’s in decreasing value
 - Decomposition: $\Sigma = C^T \Lambda C$
 - C: matrix of eigenvectors
 (transformation used)
New Techniques: PCA & DA

- Obtaining PCA results:
 - Transformation: \(D = ZT \), where
 - \(Z \) is the original data matrix
 - \(T \) is the transformation matrix
 - \(\Lambda, C, T \) calculated by various statistical packages/tools

- PCA result interpretation/usage:
 - Eigenvalues \(\approx \) explained variance.
 - First few (3-5) principal components (PCs) explain most of the variance.
 - Uncorrelated PCs
 \(\Rightarrow \) good/stable (linear/other) models

- PCA example: Table 21.1 (p.357)
New Techniques: PCA & DA

- DA: how?
 - Define discriminant function.
 - Classify into G_1 and G_2
 - G_1: not fault-prune
 - G_2: fault-prune
 - Definitions: Section 21.3.1 (p.357).
 - Other/similar definitions possible.
 - Minimize misclassification rate in model fitting and in prediction.
 - Good results (Khoshgoftaar et al., 1996).

- PCA&DA: Summary and Observations:
 - Positive/encouraging results, but,
 - Much processing/transformation needed.
 - Much statistics knowledge.
 - Difficulty in data/result interpretation.
New Technique: NN

- NN or ANN: artificial neural networks
 - Inspired by biological computation
 - Neuron: basic computational unit
 - different functions
 - Connection: neural network
 - Input/output/hidden layers

- NN applications:
 - AI and AI problem solving
 - In SQE: defect/risk identification
New Technique: NN

- Computation at a neuron: 2 stages
 - Weighted sum of input: \(h = \sum_{i=1}^{n} x_i \)
 (may include constant)
 - Then activation function \(y = g(h) \)
 - threshold, piecewise-linear,
 - Gaussian, sigmoid (below), etc.
 \[
 y = \frac{1}{1 + e^{-\beta x}}
 \]
 - Illustration: Fig 21.1 (p.358)

- Overall computation:
 - Layers of neurons
 - Input layer: raw data feed
 - Other layers: computation at \(n \) neurons
 - Objective: minimize prediction error at the output layer
New Technique: NN

- NN algorithm: backward propagation
 - Fig 21.2 (p.359)
 (actually algorithm ideas, not exact)
 - Trace through steps
 - Error: deviance (sum of error sqr)

- NN study (Khoshgoftaar and Szabo, 1996):
 - Table 21.2 (p.359)
 - NN superior to linear regression.
 - NN+PCA superior to NN on raw data.
New Technique: TBM

- **TBM**: tree-based modeling
 - Similar to decision trees
 - But data-based (derived from data)
 - Preserves tree advantages:
 - easy to understand/interpret
 - both numerical and categorical data
 - partition \Rightarrow non-uniform treatment

- **TBM** applications:
 - Main: defect analysis
 - TBDMs (tree-based defect models)
 - Past: psychology, SE-Amadeus, etc.
 - Reliability: TBRMs (Ch.22)

- **TBM**: both risk identification and characterization.
New Technique: TBM

- TBM for risk identification:
 - Assumption (in traditional techniques):
 - linear relation
 - uniformly valid result
 - Reality of defect distribution:
 - isolated pocket
 - different types of metrics
 - correlation/dependency in metrics
 - qualitative differences
 - Need new risk id. techniques.

- TBM for risk characterization:
 - Identified, then what?
 - Result interpretation.
 - Remedial/corrective actions.
 - Extrapolation to new product/release.
 - TBDMs appropriate.
New Technique: TBM

- TBDMs: tree-based defect models using tree-based modeling (TBM) technique

- Decision trees:
 - multiple/multi-stage decisions
 - may be context-sensitive
 - natural to the decision process
 - applications in many problems
 - decision making & problem solving
 - decision analysis/optimization

- Tree-based models:
 - reverse process of decision trees
 - data ⇒ tree
 - idea of decision extraction
 - generalization of “decision”
New Technique: TBM

• Technique: tree-based modeling
 ▶ Tree: nodes=data-set, edges=decision.
 ▶ Data attributes:
 – 1 response & \(n \) predictor variables.
 ▶ Construction: recursive partitioning.
 ▶ Usage: relating response to predictors
 – \(Y = Tree(X_1, \ldots, X_n) \)
 – understanding vs. predicting
 – identification and characterization
 ▶ Works for mixed-types of data.
 ▶ Tree growing and pruning.

• Algorithm: Fig 21.3 (p.360)
 ▶ regression tree and example
 ▶ classification tree: modify Step 3
New Technique: TBM

- TBDM example: Fig 21.4 (p.361)
 - IBM-NS: a commercial product.
 - 11 design/size/complexity metrics.
 - High-risk subsets: nodes rll and rr
 - characterization: Table 21.3 (p.361)
 - Design and control complexity as main predictors of high-risk.

- Key “selling” points:
 - intuitiveness and interpretation
 - compare to PCA, NN
 - quantitative & qualitative info.
 - hierarchy/importance/organization
New Technique: OSR

- OSR: optimal set reduction
 - pattern matching idea
 - clusters and cluster analysis
 - similar to TBM but different in:
 - pattern extraction vs. partition

- OSR: technique
 - pattern extraction
 - algorithm sketch: Fig 21.5 (p.362)
 - organization/modeling results:
 - no longer a tree, see example
 - general subsets, may overlap
 - illustration: Fig 21.6 (p.363)

- Details and some positive results:
 see Briand et al. (1992)
Risk Identification: Comparison

- Comparison: cost-benefit analysis
 \[\approx \text{comparing QA alternatives (Ch.17)}. \]

- Comparison area: benefit-related
 - accuracy
 - early availability and stability
 - constructive information and guidance for (quality) improvement

- Comparison area: cost-related
 - simplicity
 - ease of result interpretation
 - availability of tool support
Comparison: Accuracy

• Accuracy in assessment:
 ▶ model fits data well
 – use various goodness-of-fit measures
 ▶ avoid over-fitting
 ▶ cross validation by review etc.

• Accuracy in prediction:
 ▶ over-fitting ⇒ bad predictions
 ▶ prediction: training and testing sets
 – within project: jackknife
 – across projects: extrapolate
 ▶ minimize prediction errors
Comparison: Usefulness

- Early availability and stability
 - to be useful must be available early
 - focus on control/improvement
 - apply remedial/preventive actions early
 - track progress: stability

- constructive information and guidance
 - what: assessment/prediction
 - how to improve?
 - constructive information
 - guidance on what to do
 - example of TBRMs
Comparison: Usability

- Can't explain in a few words
 \[\Rightarrow \text{difficulties with reception/deployment} \]

- Simplicity & result interpretation?
 - technique easy to use/understand
 - what does it (the result) mean?
 - training effort involved
 - causal and other connections

- Tool and other support:
 - availability of easy-to-use tools
 - other support: process/personnel/etc.
 - direct impact on deployment
Summary & Recommendation

Comparison summary and recommendation:

- Summary: Table 21.4 (p.364)
- Recommendation: TBM good balance.
- Suite: Other technique with TBM.

Lifecycle integration:

- Process and data availability
 ⇒ inspection/testing/other QA data.
- Experience/infrastructure/tools/etc. for implementation/technology transfer.
- Similar techniques for other problems
 – e.g., identifying effort, schedule risks.
- Tailoring to individual process/product
Tree-Based ODC Data Analysis

- Continuation of ODC analysis:
 - IBM Toronto data from ODC (Ch.20)
 - 1-way → 2-way → n-way analyses
 - combinatorial explosion
 - Better focus on n-1 linkage:
 - 1 response variable: impact
 - n (=6 here) predictor variables
 - ODC attributes in Table 20.6 (p.347)
 - all except “severity” used
 - impact-severity analysis already done: see Table 20.7 (p.351)

- Tree-based ODC modeling
 - Classification trees
 (instead of regression trees)
 - Change in distribution
Tree-Based ODC Data Analysis

- Result interpretation:
 - Overall result: Fig 21.7 (p.366)
 - Dominant impact: tree nodes.
 - Impact distribution: bars.
 - Confidence: frequency and cardinality.

- Impact distribution results:
 - Primary partition: defect trigger
 - High homogeneity of right subtree
 - Problem identification: left subtree
 - Distribution: Fig 21.8 (p.367)

- Usage of modeling results:
 - Passive tracking and correction
 - Active problem identification and quality control