Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Part I. Overview and Basics

- General Book Information
- Quality: View/Measure/Model
- QA Activities/Alternatives
- From QA to SQE
Ch.1: Main Problems Addressed

- Deliver software system that...
 - does what it is supposed to do.
 - does the things correctly.
 - show/demonstrate/prove it ("does").

- Major difficulties for the above:
 - Size: MLOC products common
 - Complexity
 - Environmental stress/constraints
 - Flexibility/adaptability expected
 - "no silver bullet", but...
 - SQE (software quality engineering) helps
Ch.1: SQE as Answer

- Major SQE activities:
 - Testing: remove defect & ensure quality
 - Other QA alternatives to testing
 - How do you know: analysis & modeling

- Scope and content hierarchy: Fig.1.1 (p.6).

```
Software quality engineering

Quality assurance

Testing
```
Ch.1: Book Contents

• QA alternatives/activities:
 (and mapping to our Parts/Chapters)
 ▶ Testing (Part II)
 ▶ Other alternatives (Part III):
 – defect prevention (Ch.13)
 – inspection, review, analysis (Ch.14)
 – formal verification (Ch.15)
 – defect containment (Ch.16), etc.
 ▶ Analysis and improvement (Part IV)

• Issues in different QA alternative
 ▶ Applicability and effectiveness
 ▶ Dealing with quality problems/defects:
 – prevention/removal/tolerance
 ▶ Cost
 ▶ Comparison (Ch.17) and improvement (Part IV).
Ch.1: Usage and Readership

- Part I (overview/concept) should precede other (possibly parallel) parts.

- Dependency within each parts:
 - Essential: prior knowledge
 - Non-essential:
 - simple to complex
 - process/external order or sequence
 - top-down (and bottom-up?), etc.
 - Details: Fig 1.2 (p.10)

- Background knowledge needed:
 - CS/SE: object of study
 - math/statistics: modeling/analysis.
 - Details: Section 1.4
Ch.2: General Quality Views

- In Kitchenham & Pfleeger (1996):
 - Transcendental view: seen/not-defined.
 - User view: fitness for purpose.
 - Manufacturing view: conform to specs.
 - Product view: inherent characteristics.
 - Value-based view: willing to pay.

- In Prahalad & Krishnan (1999):
 - Conformance/adaptability/innovation
 - Traditional: conformance only
 - Service, manage expectations:
 - 0 defect → 0 defection
 - Domain specific (for info. age?):
 - Specificity, stability, evolvability
Ch.2: Quality Frameworks

- In various frameworks/mega-models
 - McCall: factors, criteria, and metrics
 - Basili: GQM (goal-question-metric)
 - SEI/CMM: process focus/levels
 - ISO 9000 series of standards
 - Dromey: component reflects Q-attributes

- ISO 9126 quality characteristics:
 - Functionality: what is needed?
 - Reliability: function correctly.
 - Usability: effort to use.
 - Efficiency: resource needed.
 - Maintainability: correct/improve/adapt.
 - Portability: one environment to another.
 - Adaptation in corporate definitions.
 - e.g. IBM’s CUPRIMDSO.
Ch.2: Defining Quality

- Quality: views and attributes

<table>
<thead>
<tr>
<th>View</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctness</td>
<td>Other</td>
</tr>
<tr>
<td>Customer (external)</td>
<td>Failures: reliability, safety, etc.</td>
</tr>
<tr>
<td>Developer (internal)</td>
<td>Faults: count, distr, class, etc.</td>
</tr>
</tbody>
</table>

- SQE focus: correctness-related.

Jeff Tian, Wiley-IEEE/CS 2005
Ch.2: Defect and Quality

• Defect/bug definition
 ▶ Failure: external behavior
 – deviation from expected behavior
 ▶ Fault: internal characteristics
 – cause for failures
 ▶ Error: incorrect/missing human action
 – conceptual mistakes
 ▶ Bug/debug: problematic terms, avoid

• Relations (not necessarily 1-1):
 errors ⇒ faults ⇒ failures: Fig 2.1 (p.21)

• Defect handling/resolution: Chapter 4.
Ch.3: Defect vs. QA

- QA: quality assurance
 - QA as dealing with defects.
 - Focus on correctness aspect of Q.
 - Many activities: testing & others
 - How ⇒ classification

- How to deal with defects:
 - Prevention
 - Removal (detect them first)
 - Containment

- Classification illustrated: Fig 3.1 (p.30)
Ch.3: Error/Fault/Failure & QA

- Preventing fault injection
 - Causal/statistical/etc. analyses based
 - Preventive measures:
 - education, technology, process, tools
 - Formal verification (faults absent)

- Removal of faults
 - Inspection: faults discovered
 - Testing: failures trace back to faults

- Tolerance of faults
 - Local failure ≠ global failure
 - Dynamic measures to tolerant faults
Ch.3: Defect Prevention Overview

- Error blocking
 - Error: missing/incorrect actions
 - Direct intervention
 - Error blocked
 ⇒ fault injections prevented
 - Rely on technology/tools/etc.

- Error source removal
 - Root cause analysis
 ⇒ identify error sources
 - Removal through education/training/etc.

- Details: Chapter 13.
Ch.3: Formal Verification Overview

• Motivation
 ▶ Fault present:
 – revealed through testing/inspection/etc.
 ▶ Fault absent: formally verify.

• Basic ideas
 ▶ Behavior formally specified:
 – pre/post conditions, or
 – as mathematical functions.
 ▶ Verify “correctness”:
 – intermediate states/steps,
 – axioms and compositional rules.
 ▶ Approaches: axiomatic/functional/etc.

• Details: Chapter 15.
Ch.3: Inspection Overview

- Artifacts (code/design/test-cases/etc.) from req./design/coding/testing/etc. phases.

- Informal reviews:
 - Self conducted reviews.
 - Independent reviews.
 - Orthogonality of views desirable.

- Formal inspections:
 - Fagan inspection and variations.
 - Process and structure.
 - Individual vs. group inspections.
 - What/how to check: techniques.

- Details: Chapter 14.
Ch.3: Testing Overview

- Product/Process characteristics:
 - Object: product type, language, etc.
 - Scale/order:
 - unit, component, system, ...
 - Who: self, independent, 3rd party

- What to check:
 - Verification vs. validation
 - External specifications (black-box)
 - Internal implementation (white/clear-box)

- Criteria: when to stop?
 - Coverage of specs/structures.
 - Reliability \Rightarrow usage-based

- Much, much more in Part II.
Ch.3: Fault Tolerance Overview

- Motivation
 - Fault present but removal infeasible/impractical
 - Fault tolerance \Rightarrow contain defects

- FT techniques: break fault-failure link
 - Recovery: rollback and redo
 - NVP: N-version programming
 - fault blocked/out-voted

- Details: Chapter 16.
Ch.3: Safety Assurance Overview

- Extending FT idea for safety:
 - FT: tolerate fault
 - Extend: tolerate failure
 - Safety: accident free

- Safety related concepts:
 - Accident: failure w/ severe consequences
 - Hazard: precondition to accident

- Safety assurance:
 - Hazard elimination/reduction/control
 - Damage control

- Details: Chapter 16.
Ch.4: QA in Context

- QA and the overall development context
 - Defect handling/resolution
 - Activities in process
 - Alternative perspectives:
 - verification/validation (V&V) view

- Defect handling/resolution
 - Status and tracking
 - Causal (root-cause) analysis
 - Resolution: defect removal/etc.
 - Improvement: break causal chain
Ch.4: Defect Measurement and Analysis

- Defect measurement:
 - Parallel to defect handling
 - Where injected/ found?
 - Type/ severity/ impact?
 - More detailed classification possible?
 - Consistent interpretation
 - Timely defect reporting

- Defect analyses/ quality models
 - As followup to defect handling.
 - Data and historical baselines
 - Goal: assessment/ prediction/ improvement
 - Causal/ risk/ reliability/ etc. analyses

- Details in Part IV.
Ch.4: QA in Software Processes

- Mega-process: initiation, development, maintenance, termination.

- Development process components:
 requirement, specification, design, coding, testing, release.

- QA in waterfall process: Fig 4.1 (p.45)
 ▶ QA in testing phase/sub-phases
 (V-model in sub-phases: Fig 4.2, p.49
 ▶ Defect prevention in early phases
 ▶ Defect removal in middle/late phases
 ▶ Defect containment in late phases
 ▶ Phase transitions: inspection/review/etc.
 ▶ QA scattered throughout the process
Ch.4: QA in Software Processes

- Process variations and QA:
 - Alternative to waterfall
 - Iterative: QA in iterations/increments;
 - Spiral: QA and risk management;
 - Mixed/synthesized: case specific;
 - More evenly distributed QA activities

- QA in maintenance processes:
 - Focus on defect handling;
 - Some defect containment activities for critical or highly-dependable systems;
 - Data for future QA activities

- QA scattered throughout all processes
Ch.4: V&V

- Validation: w.r.t. requirement (what?)
 - Appropriate/fit-for-use/ “right thing”?
 - Scenario and usage inspection/testing;
 - System/integration/acceptance testing;
 - Beta testing and operational support.

- Verification: w.r.t. specification/design (how?)
 - Correct/ “doing things right”?
 - Design as specification for components;
 - Structural and functional testing;
 - Inspections and formal verification.

- V&V in software process: Fig 4.2 (p.49).
Ch.4: V&V vs DC View

- Two views of QA:
 - V&V view
 - DC (defect-centered) view in this book
 - Interconnected: mapping possible?

- Mapping between V&V and DC view:
 - V&V after commitment (defect injected already)
 ⇒ defect removal & containment focus
 - Verification: more internal focus
 - Validation: more external focus
 - In V-model: closer to user or developer?

- Mapping: Table 4.1 (p.51)
Ch.5: QA to QE

- QA activities need additional support:
 - Planning and goal setting
 - Management:
 - When to stop?
 - Adjustment and improvement, etc.
 - All based on assessments/predictions

- Assessment of quality/reliability/etc.:
 - Data collection needed
 - Analysis and modeling
 - Providing feedback for management

- Overall process: Fig 5.1 (p.54)
 - Software quality engineering (SQE)
Ch.5: QE Activities

- Idea/activities similar to QIP.

- Major activities:
 - Pre-QA planning;
 - QA: covered previously (Ch.3 & 4);
 - Post-QA analysis and feedback (maybe parallel instead of “post-”)

- Pre-QA planning:
 - Quality goal
 - Overall QA strategy:
 - QA activities to perform?
 - Measurement/feedback planning
Ch.5: Pre-QA Planning

• Setting quality goal(s):
 ▶ Identify quality views/attributes
 ▶ Select direct quality measurements
 ▶ Assess quality expectations vs. cost

• Forming a QA strategy
 ▶ Individual strength/weakness/cost of QA alternatives matched against goals
 ▶ Measurement/feedback planning:
 – define measurements & collect data
 – preliminary choices of models/analyses
 – feedback & followup mechanisms, etc.
Ch.5: Analysis and Feedback

- Measurement:
 - Defect measurement as part of defect handling process
 - Other related measurements

- Analyses: quality/other models
 - Data and historical baselines
 - Goal: assessment/prediction/improvement
 - Focus on defect/risk/reliability analyses

- Feedback and followup:
 - Frequent feedback: assessments/predictions
 - Possible improvement areas
 - Used in management and improvement

- Details in Part IV.
Ch.5: QE Context and Cost

- QE activities in software processes:
 - Different start/end time
 - Different sets of activities and focuses
 - In waterfall process: Fig 5.2 (p.61)
 - In other processes: slight variations

- QE activity/effort distribution/dynamics:
 - Different focus in different phases
 - Different levels (qualitatively)
 - Different build-up/wind-down patterns
 - In waterfall process: Fig 5.3 (p.63)
 - In other processes:
 similar but more evenly distributed