
Tian: Software Quality Engineering Slide (Ch.6) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 6. Testing Overview

• Testing: Concepts & Process

• Testing Related Questions

• Major Testing Techniques

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 2

Testing and QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention:

Error blocking and error source removal.

• Defect removal:

. Testing – Part II, Ch.6-12.

. Inspection, etc.

• Defect containment: Fault tolerance and

failure containment (safety assurance).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 3

QA and Testing

• Testing as part of QA:

. Activities focus on testing phase

. QA/testing in waterfall and V-models

(Fig 4.1, p.45 and Fig 4.2, p.49)

. One of the most important part of QA

– defect removal: Fig 3.1 (p.30)

• Testing: Key questions:

. Why: quality demonstration vs.

defect detection and removal

. How: techniques/activities/process/etc.

. View: functional/external/black-box

vs. structural/internal/white-box

. Exit: coverage vs. usage-based

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 4

Testing: Why?

• Original purpose: demonstration of proper

behavior or quality demonstration.

≈ “testing” in traditional settings.

. evidence of quality or proper behavior.

• New purpose: defect detection & removal:

. mostly defect-free software manufactur-

ing vs. traditional manufacturing.

. flexibility of software (ease of change;

sometimes, curse of change/flexibility)

. failure observation ⇒ fault removal.

(defect detection ⇒ defect fixing)

. eclipsing original purpose

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 5

Testing: How

• How? Run-observe-followup

(particularly in case of failure observations)

• Refinement

⇒ generic process below (Fig 6.1, p.69)

Analysis & 
Follow-up

Defect
handlingSelected

measurements
& models

Feedback &
adjustments

Reliability/

satisfied?
coverage goals

Analysis/
modeling
results

Set reliability/coverage goals

Entry

& procedure
Test cases

Measurements

goal setting
information gathering
model construction
test cases
test procedure

Execution

Planning & Preparation

No Yes

Exit

• Generic testing process as instantiation of

SQE process in Fig 5.1, p.54.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 6

Testing: Activities & Generic Process

• Major testing activities:

. test planning and preparation

. execution (testing)

. analysis and followup

• Link above activities ⇒ generic process:

. planning-execution-analysis-feedback.

. entry criteria: typically external.

. exit criteria: internal and external.

. some (small) process variations

– but we focus on strategies/techniques.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 7

Testing: Planning and Preparation

• Test planning:

. goal setting based on customers’ quality

perspectives and expectations.

. overall strategy based on the above and

product/environmental characteristics.

• Test preparation:

. preparing test cases/suites:

– typically based on formal models.

. preparing test procedure.

• More details in Chapter 7.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 8

Testing: Execution

• General steps in test execution

. allocating test time (& resources)

. invoking test

. identifying system failures

(& gathering info. for followup actions)

• Key to execution: handling both normal vs.

abnormal cases

• Activities closely related to execution:

. failure identification:

test oracle problem

. data capturing and other measurement

• More details in Chapter 7.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 9

Testing: Analysis and Followup

• Analysis of testing results:

. result checking (as part of execution)

. further result analyses

– defect/reliability/etc. analyses.

. other analyses: defect ∼ other metrics.

• Followup activities:

. feedback based analysis results.

. immediate: defect removal (& re-test)

. other followup (longer term):

– decision making (exit testing, etc.)

– test process improvement, etc.

• More details in Chapter 7 (for activities)

and Part IV (for mechanisms/models/etc.).

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 10

Testing: How?

• How to test?

– refine into three sets of questions

. basic questions

. testing technique questions

. activity/management questions

• Basic questions addressed in Ch.6:

. What artifacts are tested?

. What to test?

– from which view?

– related: type of faults found?

. When to stop testing?

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 11

Testing Technique Questions

• Testing technique questions:

. specific technique used?

. systematic models used?

– related model questions (below)

. adapting technique from other domains?

. integration for efficiency/effectiveness↑?

• Testing model questions:

. underlying structure of the model?

– main types: list vs. FSM?

. how are these models used?

. model extension?

• Major techniques: Chapters 8–11.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 12

Test Activity/Management Questions

• Addressed already: Generic process and

relation to QA and software processes.

• Other activity/management questions:

. Who performs which specific activities?

. When can specific activities be performed?

. Test automation? What about tools?

. Artifacts used for test management?

. General environment for testing?

. Product type/segment?

• Most questions answered in Chapter 7.

Integration issues addressed in Chapter 12.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 13

Functional vs. Structural Testing

• Key distinction: Perspective on what need

to be checked/tested.

• Functional testing:

. tests external functions.

– as described by external specifications

. black-box in nature;

– functional mapping: input ⇒ output

– without involving internal knowledge

• Structural testing:

. tests internal implementations.

– components and structures.

. white-box in nature;

– “white” here = seeing through

⇒ internal elements visible.

. really clear/glass/transparent box.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 14

Black-Box vs. White-Box View

• Object abstraction/representation:

. high-level: whole system ≈ black-box.

. low-level: individual statements, data,

and other elements ≈ white-box.

. middle-levels of abstraction:

– function/subroutine/procedure,

module, subsystem, etc.

– method, class, super-class, etc.

• Gray-box (mixed black-/white-) testing:

. many of the middle levels of testing.

. example: procedures in modules

– procedures individually as black box,

– procedure interconnection ≈ white-box

at module level.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 15

White-box Testing

• Program component/structure knowledge

(or implementation details)

. statement/component checklist

. path (control flow) testing

. data (flow) dependency testing

• Applicability

. test in the small/early

. dual role of programmers/testers

. can also model specifications

• Criterion for stopping

. mostly coverage goals.

. occasionally quality/reliability goals.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 16

Black-box Testing

• Input/output behavior

. specification checklist.

. testing expected/specified behavior

– finite-state machines (FSMs)

. white-box technique on specification

– functional execution path testing.

• Applicability

. late in testing: system testing etc.

. suitable for IV&V

. compatible with OO/Reuse paradigm

• Criteria: when to stop

. traditional: functional coverage

. usage-based: reliability target

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 17

When to Stop Testing

• Resource-based criteria:

. Stop when you run out of time.

. Stop when you run out of money.

. Irresponsible ⇒ quality/other problems.

• Quality-based criteria:

. Stop when quality goals reached.

. Direct quality measure: reliability

– resemble actual customer usages

. Indirect quality measure: coverage.

. Other surrogate: activity completion.

. Above in decreasing desirability.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 18

Usage-Based Testing and OP

• Usage-based statistical testing:

. actual usage and scenarios/information

. captured in operational profiles (OPs)

. simulated in testing environment

(too numerous ⇒ random sampling)

• Applicability

. final stages of testing.

. particularly system/acceptance testing.

. use with s/w reliability engineering.

• Termination criteria: reliability goals

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 19

Coverage-Based Testing

• Coverage-based testing:

. systematic testing based on

formal (BBT/WBT) models and tech-

niques

. coverage measures defined for models

. testing managed by coverage goals

• Applicability

. all stages of testing.

. particularly unit and component testing.

. later phases at high abstraction levels.

• Termination criteria: coverage goals

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.6) 20

Steps in Systematic Testing

• Instantiation of Fig 6.1 (p.69), but,

. with a formalized strategies/goals,

. based on formal models and techniques,

. managed by termination criteria.

• Steps in model construction and usage:

. Define the model, usually represented as

graphs and relations.

. “Check” individual elements:

. “Test”: derive (sensitize) test cases and

then execute them.

. Result checking and followup.

• Specifics on model construction and usage

in individual testing techniques: Ch.8–11.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)


