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Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement
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Chapter 16. Fault Tolerance

and Safety Assurance

• Basic Concepts

• Fault Tolerance via RB and NVP

• Safety Assurance Techniques/Strategies

• Summary and Perspectives
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QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention:

– Error source removal & error blocking

• Defect removal: Inspection/testing/etc.

• Defect containment — This Chapter:

. Fault tolerance:

local faults 6⇒ system failures.

. Safety assurance: contain failures or

weaken failure-accident link.
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QA and Fault Tolerance

• Fault tolerance as part of QA:

. Duplication: over time or components

. High cost, high reliability

. Run-time/dynamic focus

. FT design and implementation

. Complementary to other QA activities

• General idea

. Local faults not lead to system failures

. Duplication/redundancy used

. redo ⇒ recovery block (RB)

. parallel redundancy

⇒ N version programming (NVP)

• Key reference (Lyu, 1995b):

M.R. Lyu, S/w Fault Tolerance, Wiley, 1995.
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FT: Recovery Blocks
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Contents
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• General idea: Fig 16.1 (p.270)

. Periodic checkpointing

. Problem detection/acceptance test

. Rollback (recovery)
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FT: Recovery Blocks

• Periodic checkpointing

. too often: expensive checkpointing

. too rare: expensive recovery

. smart/incremental checkpointing

• Problem detection/acceptance test

. exceptions due to in/ex-ternal causes

. periodic vs event-triggered

• Recovery (rollback) from problems:

. external disturbance: environment?

. internal faults: tolerate/correct?
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FT: NVP

unit
input output

version 1

version 2

version N

decision

• FT with NVP: Fig 16.2 (p.272)

. NVP: N-Version Programming

. Multiple independent versions

. Dynamic voting/decision ⇒ FT.
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FT: NVP

• Multiple independent versions

. Multiple: parallel vs backup?

. How to ensure independence?

• Support environment:

. concurrent execution

. switching

. voting/decision algorithms

• Correction/recovery?

. p-out-of-n reliability

. in conjunction with RB

. dynamic vs. off-line correction
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FT/NVP: Ensure Independence

• Ways to ensure independence:

. People diversity:

type, background, training, teams, etc.

. Process variations

. Technology: methods/tools/PL/etc.

. End result/product:

– design diversity: high potential

– implementation diversity: limited

• Ways to ensure design diversity:

. People/teams

. Algorithm/language/data structure

. Software development methods

. Tools and environments

. Testing methods and tools (!)

. Formal/near-formal specifications
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FT/NVP: Development Process

• Programming team independence

. Assumption: P-team independence

⇒ version independence

. Maximize P-team isolation/independence

. Mandatory rules (DOs & DON’Ts)

. Controlled communication (see below)

• Use of coordination team

. 1 C-team – n P-teams

. Communication via C-team

– not P-team to P-team

– protocols and overhead cost

. Special training for C-team

• NVP-specific process modifications
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FT/NVP: Development Phases

• Pre-process training/organization

• Requirement/specification phases:

. NVP process planning

. Goals, constraints, and possibilities

. Diversity as part of requirement

– relation to and trade-off with others

– achievable goals under constraints

. Diversity specification

. Fault detection/recovery algorithm?

• Design and coding phases:

enforce NVP-process/rules/protocols
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FT/NVP: Development Phases

• Testing phases:

. Cross-checking by different versions

— free oracle!

. Focus on fault detection/removal

. Focus on individual versions

• Evaluation/acceptance phases:

. How N-versions work together?

. Evidence of diversity/independence?

. NVP system reliability/dependability?

. Modeling/simulation/experiments

• Operational phase:

. Monitoring and quality assurance

. NVP-process for modification also
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FT and Safety

• Extending FT idea for safety:

. FT: tolerate fault

. Extend: tolerate failure

. Safety: accident free

. Weaken error-fault-failure-accident link

• FT in SSE (software safety engineering):

. Too expensive for regular systems

. As hazard reduction technique in SSE

. Other related SSE techniques:

– general redundancy

– substitution/choice of modules

– barriers and locks

– analysis of FT
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What Is Safety?

• Safety: The property of being accident-

free for (embedded) software systems.

. Accident: failures with severe consequences

. Hazard: condition for accident

. Special case of reliability

. Specialized techniques

• Software safety engineering (SSE):

. Hazard identification/analysis techniques

. Hazard resolution alternatives

. Safety and risk assessment

. Qualitative focus

. Safety and process improvement
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Safety Analysis & Improvement

• Hazard analysis:

. Hazard: condition for accident

. Fault trees: (static) logical conditions

. Event trees: dynamic sequences

. Combined and other analyses

. Generally qualitative

. Related: accident analysis and risk as-

sessment

• Hazard resolution

. Hazard elimination

. Hazard reduction

. Hazard control

. Related: damage reduction

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 15

Hazard Analysis: FTA

• Fault tree idea:

. Top event (accident)

. Intermediate events/conditions

. Basic or primary events/conditions

. Logical connections

. Form a tree structure

• Elements of a fault tree:

. Nodes: conditions and sub-conditions

– terminal vs. no terminal

. Logical relations among sub-conditions

– AND, OR, NOT

. Other types/extensions possible

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 16

Hazard Analysis: FTA Example

Collision

AND

Fail to
Stop Other

object

OR

ABS engaged
but fail to stopnot engage

ABS did Driver
error

OR

problem
Software Other

problems
woreout

Breakpad

• Example FTA for an automobile accident

(Fig. 16.3, p.276)
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Hazard Analysis: FTA

• FTA construction:

. Starts with top event/accident

. Decomposition of events or conditions

. Stop when further development not

required or not possible (atomic)

. Focus on controllable events/elements

• Using FTA:

. Hazard identification

– logical composition

– (vs. temporal composition in ETA)

. Hazard resolution (more later)

– component replacement etc.

– focused safety verification

– negate logical relation
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Hazard Analysis: ETA

• ETA: Why?

. FTA: focus on static analysis

– (static) logical conditions

. Dynamic aspect of accidents

. Timing and temporal relations

. Real-time control systems

• Search space/strategy concerns:

. Contrast ETA with FTA:

– FTA: backward search

– ETA: forward search

. May yield different path/info.

. ETA provide additional info.
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Hazard Analysis: ETA Example

Obstacle appears

No obstacle

Cruising

Break in time

No collision

Did not break in time

ABS did not work

ABS worked

Collision

Collision

No collision

• Example ETA for an automobile accident

(Fig 16.4, p.277)

• Compare/contrast with FTA a few slides

back.
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Hazard Analysis: ETA

• Event trees:

. Temporal/cause-effect diagram

. (Primary) event and consequences

. Stages and (simple) propagation

– not exact time interval

– logical stages and decisions

• Event tree analysis (ETA):

. Recreate accident sequence/scenario

. Critical path analysis

. Used in hazard resolution (more later)

– esp. in hazard reduction/control

– e.g. creating barriers

– isolation and containment
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Hazard Elimination

• Hazard sources identification⇒ elimination

(Some specific faults prevented or removed.)

• Traditional QA (but with hazard focus):

. Fault prevention activities:

– education/process/technology/etc

– formal specification & verification

. Fault removal activities:

– rigorous testing/inspection/analyses

• “Safe” design: More specialized techniques:

. Substitution, simplification, decoupling.

. Human error elimination.

. Hazardous material/conditions↓.
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Hazard Reduction

• Hazard identification ⇒ reduction

(Some specific system failures prevented or

tolerated.)

• Traditional QA (but with hazard focus):

. Fault tolerance

. Other redundancy

• “Safe” design: More specialized techniques:

. Creating hazard barriers

. Safety margins and safety constraints

. Locking devices

. Reducing hazard likelihood

. Minimizing failure probability

. Mostly “passive” or “reactive”
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Hazard Control

• Hazard identification ⇒ control

. Key: failure severity reduction.

. Post-failure actions.

. Failure-accident link weakened.

. Traditional QA: not much, but good

design principles may help.

• “Safe” design: More specialized techniques:

. Isolation and containment

. Fail-safe design & hazard scope↓

. Protection system

. More “active” than “passive”

. Similar techniques to hazard reduction,

– but focus on post-failure severity↓
vs. pre-failure hazard likelihood↓.
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Accident Analysis & Damage Control

• Accident analysis:

. Accident scenario recreation/analysis

– possible accidents and damage areas

. Generally simpler than hazard analysis

. Based on good domain knowledge

(not much software specifics involved)

• Damage reduction or damage control

. Post-accident vs. pre-accident hazard

resolution

. Accident severity reduced

. Escape route

. Safe abandonment of material/product/etc.

. Device for limiting damages
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Software Safety Program (SSP)

• Leveson’s approach (Leveson, 1995)

— Software safety program (SSP)

• Process and technology integration

. Limited goals

. Formal verification/inspection based

. But restricted to safety risks

. Based on hazard analyses results

. Safety analysis and hazard resolution

. Safety verification:

– few things carried over

• In overall development process:

. Safety as part of the requirement

. Safety constraints at different levels/phases

. Verification/refinement activities

. Distribution over the whole process

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 26

Case Study: PSC for CCSCS

• Object of study and general problems:

. CCSCS: Computer-controlled

safety-critical systems.

. Problem: Safety and failure damage.

. (software) reliability models unsuitable:

– assuming large numbers of failures

– missing damage information

. Formal verification:

– static vs. dynamic verification

– need systematic assertion derivation

• Prescriptive specification checking:

. Analyze sources of hazard

. Derive systematic assertions

. Dynamically check the assertions
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TFM: Two-Frame-Model

• TFM: Two-Frame-Model

. Physical frame

. Logical frame

. Sensors: physical ⇒ logical

. Actuators: logical ⇒ physical

• TFM characteristics and comparison:

. Interaction between the two frames

. Nondeterministic state transitions and

encoding/decoding functions

. Focuses on symmetry/consistency

between the two frames.
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TFM Example

FSM rules

Equipment

Logical states

Physical process

Sensors Actuators 

Decoding Encoling

Physical Frame

Logical Frame

• TFM Example: Fig 16.5 (p.280).

. physical frame: nuclear reactor

. logical frame: computer controller
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Usage of TFM

• Failure/hazard sources and scenarios:

. Hardware/equipment failures.

. Software failures.

. Communication/interface failures.

. Focus on last one, based on empirical

evidence.

• Causes of communication/interface hazards:

. Inconsistency between frames.

. Sources of inconsistencies

. Use of prescriptive specifications (PS)

. Automatic checking of PS for hazard

prevention
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Frame Inconsistencies

• System integrity weaknesses: Major sources

of frame inconsistencies in CCSCS.

• Discrete vs. continuous:

. Logical frame: discrete

. Physical frame: mostly continuous

. Continuous regularity or validity of

in-/extrapolation

• Total vs. partial functions:

. Logical frame: partial function

. Physical frame: total function

. ⇒ coercion, domain/default specs, etc.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 31

Frame Inconsistencies (II)

• Invariants and limits:

. Logical frame: no intrinsic invariant

. Physical frame: intrinsic invariant

. Special case: physical limit

. ⇒ assertions on boundaries/relations as

invariants/limits to check

• Semantic gap:

. Logical frame: image/map of the reality

. Physical frame: physical reality

. Syntax vs. semantics in logical frame

• General solution: to derive systematic

assertions for each integrity weakness and

automatically/dynamically check them.
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Prescriptive Specifications (PS)

• Definition and examples:

. Assertion: desired system behavior.

. Use PS in CCSCS

• PS for CCSCS:

. Address integrity weaknesses

. Systematic derivation

. How to check? dynamic/automatic

. Applications in case studies

. Effectiveness and completeness
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Deriving Specific PS

• Domain prescriptions:

. Address: partial/total function

. Boundary: e.g., upper/lower bounds

. Type:

– expected ⇒ normal processing

– unexpected: provide default values or

perform exception handling

• Primitive invariants

. Address: lack of intrinsic invariant

. Relations based on physical law

. Use TFM-based FTA and ETA to iden-

tify entities to check

. e.g., conservation law:

∆Pi = Pi(t1)−Pi(t0) = Gi(t0, t1)−Ti(t0, t1)
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Deriving Specific PS (II)

• Safety assertions:

. Address: physical/safety limits

. Directly from physical/safety limits

. Indirect assertions:

– related program variables

– based on TFM-based FTA and ETA

• Image consistency assertions:

. Address: discrete vs. continuous

. State or status checking

. Rate checking
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Deriving Specific PS (III)

• Entity dependency assertions:

. Address: linkage among components

(discrete/continuous and semantic gap)

. Functional/relational dependencies

. Operational characteristics according to

physical laws

• Temporal dependency assertions:

. Address:

temporal relations among components

(discrete/continuous and semantic gap)

. Temporal relations/dependencies

. Time delay effect according to physical

laws

. CCSCS are real-time systems
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A Comprehensive Case Study

• Selecting a case study:

. Several case studies performed

. TMI-2: Three Mile Island accident

. Simulator of TMI-2 accident

. Seeding and detection of faults

• A simulator with components:

. digital controller (pseudo-program chart)

. physical system with 4 process variables:

power, temp, pressure, water level

. introducing prescription monitor
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Prescription Monitor in Case Study

(set 1)

sensors
(set 2) predicted

state
software
entities

physical
state

alarm for
inconsistencies

physical
system

digital

sensors

controller
actuators

prescription
monitor

• Prescription monitor: Fig 16.6 (p.281)

• Prescription monitor development:

. performance constraints

. quality/reliability of itself?

. usage of independent sets of sensors
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Case Study (II)

• Developing PS in the case study:

. Generic assertions (domain etc.)

. Specific assertions with examples

• Fault seeding: wide variety of faults

. Erroneous input from the user (1-4)

. Wrong data types or values (5-7)

. Programming errors (8-16)

. Wrong reading of sensors (17-19)

• Result: all detected by prescription monitor

by specific PS
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Case Study Summary

• Prescriptive specification checking:

. Based on TFM

. Analyze system integrity weaknesses

. Derive corresponding assertions or PS

. Checking PS for hazard prevention

. Appears to be effective in several case

studies

• Future directions and development:

. Apply to realistic applications

. Prescription monitor development

. Support for PS derivation

. Generalization to other systems

– e.g., embedded systems,

– software-based heterogeneous systems...
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Summary and Perspectives

• Software fault tolerance:

. Duplication and redundancy.

. Techniques: RB, NVP, and variations.

. Cost and effectiveness concerns.

• SSE: Augment S/w Eng.

. Analysis to identify hazard

. Design for safety

. Safety constraints and verification

. Leveson’s s/w safety program, PSC, etc.

. Cost and application concerns.

• Comparison to other QA: Chapter 17.
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