
Tian: Software Quality Engineering Slide (Ch.16) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 16. Fault Tolerance

and Safety Assurance

• Basic Concepts

• Fault Tolerance via RB and NVP

• Safety Assurance Techniques/Strategies

• Summary and Perspectives

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 2

QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention:

– Error source removal & error blocking

• Defect removal: Inspection/testing/etc.

• Defect containment — This Chapter:

. Fault tolerance:

local faults 6⇒ system failures.

. Safety assurance: contain failures or

weaken failure-accident link.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 3

QA and Fault Tolerance

• Fault tolerance as part of QA:

. Duplication: over time or components

. High cost, high reliability

. Run-time/dynamic focus

. FT design and implementation

. Complementary to other QA activities

• General idea

. Local faults not lead to system failures

. Duplication/redundancy used

. redo ⇒ recovery block (RB)

. parallel redundancy

⇒ N version programming (NVP)

• Key reference (Lyu, 1995b):

M.R. Lyu, S/w Fault Tolerance, Wiley, 1995.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 4

FT: Recovery Blocks

Saved
Dynamic
Contents

X

failure
detected

refresh
restore

refresh

execution flowcheckpoint checkpoint
rerun

• General idea: Fig 16.1 (p.270)

. Periodic checkpointing

. Problem detection/acceptance test

. Rollback (recovery)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 5

FT: Recovery Blocks

• Periodic checkpointing

. too often: expensive checkpointing

. too rare: expensive recovery

. smart/incremental checkpointing

• Problem detection/acceptance test

. exceptions due to in/ex-ternal causes

. periodic vs event-triggered

• Recovery (rollback) from problems:

. external disturbance: environment?

. internal faults: tolerate/correct?

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 6

FT: NVP

unit
input output

version 1

version 2

version N

decision

• FT with NVP: Fig 16.2 (p.272)

. NVP: N-Version Programming

. Multiple independent versions

. Dynamic voting/decision ⇒ FT.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 7

FT: NVP

• Multiple independent versions

. Multiple: parallel vs backup?

. How to ensure independence?

• Support environment:

. concurrent execution

. switching

. voting/decision algorithms

• Correction/recovery?

. p-out-of-n reliability

. in conjunction with RB

. dynamic vs. off-line correction

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 8

FT/NVP: Ensure Independence

• Ways to ensure independence:

. People diversity:

type, background, training, teams, etc.

. Process variations

. Technology: methods/tools/PL/etc.

. End result/product:

– design diversity: high potential

– implementation diversity: limited

• Ways to ensure design diversity:

. People/teams

. Algorithm/language/data structure

. Software development methods

. Tools and environments

. Testing methods and tools (!)

. Formal/near-formal specifications

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 9

FT/NVP: Development Process

• Programming team independence

. Assumption: P-team independence

⇒ version independence

. Maximize P-team isolation/independence

. Mandatory rules (DOs & DON’Ts)

. Controlled communication (see below)

• Use of coordination team

. 1 C-team – n P-teams

. Communication via C-team

– not P-team to P-team

– protocols and overhead cost

. Special training for C-team

• NVP-specific process modifications

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 10

FT/NVP: Development Phases

• Pre-process training/organization

• Requirement/specification phases:

. NVP process planning

. Goals, constraints, and possibilities

. Diversity as part of requirement

– relation to and trade-off with others

– achievable goals under constraints

. Diversity specification

. Fault detection/recovery algorithm?

• Design and coding phases:

enforce NVP-process/rules/protocols

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 11

FT/NVP: Development Phases

• Testing phases:

. Cross-checking by different versions

— free oracle!

. Focus on fault detection/removal

. Focus on individual versions

• Evaluation/acceptance phases:

. How N-versions work together?

. Evidence of diversity/independence?

. NVP system reliability/dependability?

. Modeling/simulation/experiments

• Operational phase:

. Monitoring and quality assurance

. NVP-process for modification also

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 12

FT and Safety

• Extending FT idea for safety:

. FT: tolerate fault

. Extend: tolerate failure

. Safety: accident free

. Weaken error-fault-failure-accident link

• FT in SSE (software safety engineering):

. Too expensive for regular systems

. As hazard reduction technique in SSE

. Other related SSE techniques:

– general redundancy

– substitution/choice of modules

– barriers and locks

– analysis of FT

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 13

What Is Safety?

• Safety: The property of being accident-

free for (embedded) software systems.

. Accident: failures with severe consequences

. Hazard: condition for accident

. Special case of reliability

. Specialized techniques

• Software safety engineering (SSE):

. Hazard identification/analysis techniques

. Hazard resolution alternatives

. Safety and risk assessment

. Qualitative focus

. Safety and process improvement

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 14

Safety Analysis & Improvement

• Hazard analysis:

. Hazard: condition for accident

. Fault trees: (static) logical conditions

. Event trees: dynamic sequences

. Combined and other analyses

. Generally qualitative

. Related: accident analysis and risk as-

sessment

• Hazard resolution

. Hazard elimination

. Hazard reduction

. Hazard control

. Related: damage reduction

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 15

Hazard Analysis: FTA

• Fault tree idea:

. Top event (accident)

. Intermediate events/conditions

. Basic or primary events/conditions

. Logical connections

. Form a tree structure

• Elements of a fault tree:

. Nodes: conditions and sub-conditions

– terminal vs. no terminal

. Logical relations among sub-conditions

– AND, OR, NOT

. Other types/extensions possible

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 16

Hazard Analysis: FTA Example

Collision

AND

Fail to
Stop Other

object

OR

ABS engaged
but fail to stopnot engage

ABS did Driver
error

OR

problem
Software Other

problems
woreout

Breakpad

• Example FTA for an automobile accident

(Fig. 16.3, p.276)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 17

Hazard Analysis: FTA

• FTA construction:

. Starts with top event/accident

. Decomposition of events or conditions

. Stop when further development not

required or not possible (atomic)

. Focus on controllable events/elements

• Using FTA:

. Hazard identification

– logical composition

– (vs. temporal composition in ETA)

. Hazard resolution (more later)

– component replacement etc.

– focused safety verification

– negate logical relation

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 18

Hazard Analysis: ETA

• ETA: Why?

. FTA: focus on static analysis

– (static) logical conditions

. Dynamic aspect of accidents

. Timing and temporal relations

. Real-time control systems

• Search space/strategy concerns:

. Contrast ETA with FTA:

– FTA: backward search

– ETA: forward search

. May yield different path/info.

. ETA provide additional info.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 19

Hazard Analysis: ETA Example

Obstacle appears

No obstacle

Cruising

Break in time

No collision

Did not break in time

ABS did not work

ABS worked

Collision

Collision

No collision

• Example ETA for an automobile accident

(Fig 16.4, p.277)

• Compare/contrast with FTA a few slides

back.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 20

Hazard Analysis: ETA

• Event trees:

. Temporal/cause-effect diagram

. (Primary) event and consequences

. Stages and (simple) propagation

– not exact time interval

– logical stages and decisions

• Event tree analysis (ETA):

. Recreate accident sequence/scenario

. Critical path analysis

. Used in hazard resolution (more later)

– esp. in hazard reduction/control

– e.g. creating barriers

– isolation and containment

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 21

Hazard Elimination

• Hazard sources identification⇒ elimination

(Some specific faults prevented or removed.)

• Traditional QA (but with hazard focus):

. Fault prevention activities:

– education/process/technology/etc

– formal specification & verification

. Fault removal activities:

– rigorous testing/inspection/analyses

• “Safe” design: More specialized techniques:

. Substitution, simplification, decoupling.

. Human error elimination.

. Hazardous material/conditions↓.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 22

Hazard Reduction

• Hazard identification ⇒ reduction

(Some specific system failures prevented or

tolerated.)

• Traditional QA (but with hazard focus):

. Fault tolerance

. Other redundancy

• “Safe” design: More specialized techniques:

. Creating hazard barriers

. Safety margins and safety constraints

. Locking devices

. Reducing hazard likelihood

. Minimizing failure probability

. Mostly “passive” or “reactive”

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 23

Hazard Control

• Hazard identification ⇒ control

. Key: failure severity reduction.

. Post-failure actions.

. Failure-accident link weakened.

. Traditional QA: not much, but good

design principles may help.

• “Safe” design: More specialized techniques:

. Isolation and containment

. Fail-safe design & hazard scope↓

. Protection system

. More “active” than “passive”

. Similar techniques to hazard reduction,

– but focus on post-failure severity↓
vs. pre-failure hazard likelihood↓.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 24

Accident Analysis & Damage Control

• Accident analysis:

. Accident scenario recreation/analysis

– possible accidents and damage areas

. Generally simpler than hazard analysis

. Based on good domain knowledge

(not much software specifics involved)

• Damage reduction or damage control

. Post-accident vs. pre-accident hazard

resolution

. Accident severity reduced

. Escape route

. Safe abandonment of material/product/etc.

. Device for limiting damages

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 25

Software Safety Program (SSP)

• Leveson’s approach (Leveson, 1995)

— Software safety program (SSP)

• Process and technology integration

. Limited goals

. Formal verification/inspection based

. But restricted to safety risks

. Based on hazard analyses results

. Safety analysis and hazard resolution

. Safety verification:

– few things carried over

• In overall development process:

. Safety as part of the requirement

. Safety constraints at different levels/phases

. Verification/refinement activities

. Distribution over the whole process

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 26

Case Study: PSC for CCSCS

• Object of study and general problems:

. CCSCS: Computer-controlled

safety-critical systems.

. Problem: Safety and failure damage.

. (software) reliability models unsuitable:

– assuming large numbers of failures

– missing damage information

. Formal verification:

– static vs. dynamic verification

– need systematic assertion derivation

• Prescriptive specification checking:

. Analyze sources of hazard

. Derive systematic assertions

. Dynamically check the assertions

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 27

TFM: Two-Frame-Model

• TFM: Two-Frame-Model

. Physical frame

. Logical frame

. Sensors: physical ⇒ logical

. Actuators: logical ⇒ physical

• TFM characteristics and comparison:

. Interaction between the two frames

. Nondeterministic state transitions and

encoding/decoding functions

. Focuses on symmetry/consistency

between the two frames.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 28

TFM Example

FSM rules

Equipment

Logical states

Physical process

Sensors Actuators 

Decoding Encoling

Physical Frame

Logical Frame

• TFM Example: Fig 16.5 (p.280).

. physical frame: nuclear reactor

. logical frame: computer controller

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 29

Usage of TFM

• Failure/hazard sources and scenarios:

. Hardware/equipment failures.

. Software failures.

. Communication/interface failures.

. Focus on last one, based on empirical

evidence.

• Causes of communication/interface hazards:

. Inconsistency between frames.

. Sources of inconsistencies

. Use of prescriptive specifications (PS)

. Automatic checking of PS for hazard

prevention

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 30

Frame Inconsistencies

• System integrity weaknesses: Major sources

of frame inconsistencies in CCSCS.

• Discrete vs. continuous:

. Logical frame: discrete

. Physical frame: mostly continuous

. Continuous regularity or validity of

in-/extrapolation

• Total vs. partial functions:

. Logical frame: partial function

. Physical frame: total function

. ⇒ coercion, domain/default specs, etc.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 31

Frame Inconsistencies (II)

• Invariants and limits:

. Logical frame: no intrinsic invariant

. Physical frame: intrinsic invariant

. Special case: physical limit

. ⇒ assertions on boundaries/relations as

invariants/limits to check

• Semantic gap:

. Logical frame: image/map of the reality

. Physical frame: physical reality

. Syntax vs. semantics in logical frame

• General solution: to derive systematic

assertions for each integrity weakness and

automatically/dynamically check them.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 32

Prescriptive Specifications (PS)

• Definition and examples:

. Assertion: desired system behavior.

. Use PS in CCSCS

• PS for CCSCS:

. Address integrity weaknesses

. Systematic derivation

. How to check? dynamic/automatic

. Applications in case studies

. Effectiveness and completeness

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 33

Deriving Specific PS

• Domain prescriptions:

. Address: partial/total function

. Boundary: e.g., upper/lower bounds

. Type:

– expected ⇒ normal processing

– unexpected: provide default values or

perform exception handling

• Primitive invariants

. Address: lack of intrinsic invariant

. Relations based on physical law

. Use TFM-based FTA and ETA to iden-

tify entities to check

. e.g., conservation law:

∆Pi = Pi(t1)−Pi(t0) = Gi(t0, t1)−Ti(t0, t1)

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 34

Deriving Specific PS (II)

• Safety assertions:

. Address: physical/safety limits

. Directly from physical/safety limits

. Indirect assertions:

– related program variables

– based on TFM-based FTA and ETA

• Image consistency assertions:

. Address: discrete vs. continuous

. State or status checking

. Rate checking

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 35

Deriving Specific PS (III)

• Entity dependency assertions:

. Address: linkage among components

(discrete/continuous and semantic gap)

. Functional/relational dependencies

. Operational characteristics according to

physical laws

• Temporal dependency assertions:

. Address:

temporal relations among components

(discrete/continuous and semantic gap)

. Temporal relations/dependencies

. Time delay effect according to physical

laws

. CCSCS are real-time systems

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 36

A Comprehensive Case Study

• Selecting a case study:

. Several case studies performed

. TMI-2: Three Mile Island accident

. Simulator of TMI-2 accident

. Seeding and detection of faults

• A simulator with components:

. digital controller (pseudo-program chart)

. physical system with 4 process variables:

power, temp, pressure, water level

. introducing prescription monitor

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 37

Prescription Monitor in Case Study

(set 1)

sensors
(set 2) predicted

state
software
entities

physical
state

alarm for
inconsistencies

physical
system

digital

sensors

controller
actuators

prescription
monitor

• Prescription monitor: Fig 16.6 (p.281)

• Prescription monitor development:

. performance constraints

. quality/reliability of itself?

. usage of independent sets of sensors

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 38

Case Study (II)

• Developing PS in the case study:

. Generic assertions (domain etc.)

. Specific assertions with examples

• Fault seeding: wide variety of faults

. Erroneous input from the user (1-4)

. Wrong data types or values (5-7)

. Programming errors (8-16)

. Wrong reading of sensors (17-19)

• Result: all detected by prescription monitor

by specific PS

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 39

Case Study Summary

• Prescriptive specification checking:

. Based on TFM

. Analyze system integrity weaknesses

. Derive corresponding assertions or PS

. Checking PS for hazard prevention

. Appears to be effective in several case

studies

• Future directions and development:

. Apply to realistic applications

. Prescription monitor development

. Support for PS derivation

. Generalization to other systems

– e.g., embedded systems,

– software-based heterogeneous systems...

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)



Tian: Software Quality Engineering Slide (Ch.16) 40

Summary and Perspectives

• Software fault tolerance:

. Duplication and redundancy.

. Techniques: RB, NVP, and variations.

. Cost and effectiveness concerns.

• SSE: Augment S/w Eng.

. Analysis to identify hazard

. Design for safety

. Safety constraints and verification

. Leveson’s s/w safety program, PSC, etc.

. Cost and application concerns.

• Comparison to other QA: Chapter 17.

Wiley-IEEE/CS Press, 2005 Slides V2 (2007)


