Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Chapter 22. Software Reliability Engineering

- Concepts and Approaches
- Existing Approaches: SRGMs & IDRM
- Assessment & Improvement with TBRMs
- SRE Perspectives
What Is SRE

- **Reliability**: Probability of failure-free operation for a specific time period or input set under a specific environment
 - Failure: behavioral deviations
 - Time: how to measure?
 - Input state characterization
 - Environment: OP

- Software reliability engineering:
 - Engineering (applied science) discipline
 - Measure, predict, manage reliability
 - Statistical modeling
 - Customer perspective:
 - failures vs. faults
 - meaningful time vs. development days
 - customer operational profile
Assumption: SRE and OP

- Assumption 1: OP, to ensure software reliability from a user’s perspective.

- OP: Operational Profile
 - Quantitative characterization of the way a (software) system will be used.
 - Test case generation/selection/execution
 - Realistic assessment
 - Predictions (minimize discontinuity)

- OP topics in SQE book:
 - Chapter 8: Musa’s OP
 - flat list with probabilities
 - tree-structured OP
 - dev. procedures: Musa-1/Musa-2
 - Chapter 10: Markov chains and UMMs (unified Markov models)
Other Assumptions in Context

- Assumption 2: Randomized testing
 - Independent failure intervals/observations
 - Approximation in large software systems
 - Adjustment for non-random testing
 - new models or data treatments

- Assumption 3: Failure-fault relation
 - Failure probability $\sim \# \text{ faults}$
 - Exposure through OP-based testing
 - Possible adjustment?
 - Statistical validity for large s/w systems
Other Assumptions and Context

- Assumption 4: time-reliability relation
 - time measurement in SRGMs
 - usage-dependent vs. usage-independent
 - proper choice under specific env.

- Usage-independent time measurement:
 - calendar/wall-clock time
 - only if stable or constant workload

- Usage-dependent time measurement:
 - for systems with uneven workload
 - execution time – Musa’s models
 - alternatives: runs, transactions, etc.
Workload for Products D

- Fig 22.1 (p.374): IBM product D workload
 - number of test runs for each day
 - wide variability
 - need usage-dependent time measurement
 - # of runs used
Workload for Products E

- Fig 22.2 (p.375): IBM product E workload
 - number of transactions for each run
 - again, wide variability
 - need usage-dependent time measurement
 - # of transactions used
Input Domain Reliability Models

- IDRMs: Current reliability snapshot based on observed testing data of \(n \) samples.

- Assessment of current reliability.

- Prediction of future reliability (limited prediction due to snapshot)

- Management and improvement
 - As acceptance criteria.
 - Risk identification and followups:
 - reliability for input subsets
 - remedies for problematic areas
 - preventive actions for other areas
Nelson’s IDRM

- Nelson Model:
 - Running for a sample of n inputs.
 - Randomly selected from set E:
 \[E = \{E_i : i = 1, 2, \ldots, N\} \]
 - Sampling probability vector:
 \[\{P_i : i = 1, 2, \ldots, N\} \]
 - $\{P_i\}$: Operational profile.
 - Number of failures: f.
 - Estimated reliability:
 \[R = 1 - r = 1 - \frac{f}{n} = \frac{n - f}{n} \]
 - Failure rate: r.

- Repeated sampling without fixing.
IDRM Applications

- Nelson model for a large s/w system
 - succ. segments: Table 22.1 (p.376)

<table>
<thead>
<tr>
<th>Segment</th>
<th>r_n Range</th>
<th>\hat{R}_i</th>
<th>$\hat{\lambda}_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 < r_n ≤ 137</td>
<td>0.241</td>
<td>0.759</td>
</tr>
<tr>
<td>2</td>
<td>137 < r_n ≤ 309</td>
<td>0.558</td>
<td>0.442</td>
</tr>
<tr>
<td>3</td>
<td>309 < r_n ≤ 519</td>
<td>0.176</td>
<td>0.824</td>
</tr>
<tr>
<td>4</td>
<td>519 < r_n ≤ 1487</td>
<td>0.454</td>
<td>0.546</td>
</tr>
<tr>
<td>5</td>
<td>1487 < r_n ≤ 1850</td>
<td>0.730</td>
<td>0.270</td>
</tr>
<tr>
<td>6</td>
<td>1850 < r_n ≤ 3331</td>
<td>0.930</td>
<td>0.070</td>
</tr>
</tbody>
</table>

- Nelson model for web applications
 - daily error rates: Table 22.2 (p.377)

<table>
<thead>
<tr>
<th>Daily Error Rate</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std dev</th>
<th>rse</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors /hits</td>
<td>0.0287</td>
<td>0.0466</td>
<td>0.0379</td>
<td>0.00480</td>
<td>0.126</td>
</tr>
<tr>
<td>errors /day</td>
<td>501</td>
<td>1582</td>
<td>1101</td>
<td>312</td>
<td>0.283</td>
</tr>
</tbody>
</table>

Wiley-IEEE/CS Press, 2005
Other IDRMs and Applications

- Brown-Lipow model:
 - explicit input state distribution.
 - known probability for sub-domains E_i
 - f_i failures for n_i runs from subdomain E_i

$$R = 1 - \sum_{i=1}^{N} \frac{f_i}{n_i} P(E_i)$$

- would be the same as Nelson model for representative sampling

- IDRM applications
 - overall reliability at acceptance testing
 - reliability snapshots over time: in Nelson model examples earlier
 - reliability for input subsets: in TBRMs
Time Domain Measures and Models

- Reliability measurement
 - Reliability: time & probability
 - Result: failure vs. success
 - Time/input measurement
 - Failure intensity (rate): alternative
 - MTBF/MTTF: summary measure

- S/w reliability growth models (SRGMs):
 - Reliability growth due to defect removal based on observed testing data.
 - Reliability-fault relations
 - Exposure assumptions
 - Data: time-between-failure (TBF) vs. period-failure-count (PFC) models
Basic Functions (Time Domain)

- **Failure distribution functions:**
 - $F(t)$: cumulative distribution function (cdf) for failure over time
 - $f(t)$: prob. density function (pdf)
 \[f(t) = F'(t) \]

- **Reliability-related functions:**
 - Reliability function $R(t) = 1 - F(t)$
 \[R(t) = P(T \geq t) = P(\text{no failure by } t) \]
 - Hazard function/rate/intensity
 \[z(t) \Delta t = P\{t < T < t + \Delta t | T > t\} \]

- **Jelinski-Moranda (de-eutrophication) model:**
 \[z_i = \phi(N - (i - 1)) \]
Other Basic Definitions

- MTBF, MTTF, and reliability
 - Mean time to failure (MTTF)
 \[\text{MTTF} = \int_0^\infty tf(t)dt = \int_0^\infty R(t)dt \]
 - Mean time between failures (MTBF)
 \[\text{MTBF} = \text{MTTF for memoryless process} \]
 \[= \text{similarly defined} \]
 - Good summary measure of reliability

- Reliability-hazard relation:
 \[R(t) = e^{-\int_0^t z(x)dx} \]
 \[z(t) = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)} \]
Other Basic Functions

- Overall failure arrival process:
 (as compared to individual failures)

- NHPP (non-homogeneous Poisson process):
 - Most commonly used for modeling
 - Probability of n failures in $[0, t]$:
 \[
 P(N(t) = n) = \frac{m(t)^n}{n!}e^{-m(t)}
 \]
 - $m(t)$: mean function
 - Failure rate/intensity $\lambda(t)$:
 \[
 \lambda(t) = m'(t) = \frac{dm(t)}{dt}
 \]

- Other processes: Binomial, etc.
Commonly Used NHPP Models

- **Goel-Okumoto model**
 \[m(t) = N(1 - e^{-bt}) \]
 - \(N \): estimated \# of defects
 - \(b \): model curvature

- **S-shaped model:**
 \[m(t) = N(1 - (1 + bt)e^{-bt}) \]
 - allow for slow start
 - may be more descriptive

- **Musa-Okumoto execution time model:**
 \[m(\tau) = \frac{1}{\theta} \log(\lambda_0 \theta \tau + 1) \]
 - emphasis: execution time \(\tau \)
SRGM Applications

- **Assessment** of current reliability

- **Prediction** of future reliability and resource to reach reliability goals

- **Management and improvement**
 - Reliability goals as exit criteria
 - Resource allocation (time/distribution)
 - Risk identification and followups:
 - reliability (growth) of different areas
 - remedies for problematic areas
 - preventive actions for other areas
SRGM Application Example

- SRGM example: Fig. 22.3 (p.380)
 - IBM product D, # of runs as workload
 - Goel-Okumoto (GO) and S-shape SRGMs
Assessing Existing Approaches

- **Time domain reliability analysis:**
 - Customer perspective.
 - Overall assessment and prediction.
 - Ability to track reliability change.
 - Issues: assumption validity.
 - Problem: how to improve reliability?

- **Input domain reliability analysis:**
 - Explicit operational profile.
 - Better input state definition.
 - Hard to handle change/evolution.
 - Issues: sampling and practicality.
 - Problem: realistic reliability assessment?
TBRMs: An Integrated Approach

- Combine strengths of the two.

- TBRM for reliability modeling:
 - Input state: categorical information.
 - Each run as a data point.
 - Time cutoff for partitions.
 - Data sensitive partitioning
 ⇒ Nelson models for subsets.

- Using TBRMs:
 - Reliability for partitioned subsets.
 - Use both input and timing information.
 - Monitoring changes in trees.
 - Enhanced exit criteria.
 - Integrate into the testing process.
TBRMs

- Tree-based reliability models (TBRMs): TBM using all information.

- Response: Result indicator r_{ij}.
 - $r_{ij} = 1$ for success, 0 for failure.
 - Nelson model for subsets:

$$s_i = \frac{1}{n_i} \sum_{j=1}^{n_i} r_{ij} = \frac{n_i - f_i}{n_i} = \hat{R}_i$$

or

$$s_i = \frac{\sum_{j=1}^{n_i} t_{ij} s_{ij}}{\sum_{j=1}^{n_i} t_j} = \frac{\sum_{j=1}^{n_i} r_{ij}}{\sum_{j=1}^{n_i} t_j} = \frac{S_i}{T_i} = \hat{R}_i.$$

- Predictors: Timing and input states.
 - Data sensitive partitioning.
 - Key factors affecting reliability.
TBRMs: Interpretation & Usage

- Interpretation of trees:
 - Predicted response: success rate.
 (Nelson reliability estimate.)
 - Time predictor: reliability change.
 - State predictor: risk identification.

- Change monitoring and risk identification:
 - Change in predicted response.
 - Through tree structural change.
 - Identify high risk input state.
 - Additional analyses often necessary.
 - Enhanced test cases or components.
TBRMs at Different Times

- Fig 22.4 (p.383): an early TBRM.
 - high-risk areas identified by input
 - early actions to improve reliability
TBRMs at Different Times

- Fig 22.5 (p.383): a late TBRM.
 - high-risk areas ≈ early runs
 - uniformly reliable ⟷ ready for release
TBRM Impact

- Evaluation/validation with SRGMs:
 - Trend of reliability growth.
 - Stability of failure arrivals.
 - Estimated reliability: see below

- Quantitative impact evaluation:
 - Product purity level ρ at exit:
 $$\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$$

- Important: deployment
 - all successor products at IBM
TBRM Result Comparison

- Fig 22.6 (p.384): TBRMs used in D
 - better reliability growth in D
 - compare to A, B, and C (no TBRMs)
TBRM Result Comparison

- Table 22.3 (p.384): quantitative comparison with ρ

<table>
<thead>
<tr>
<th>Purification Level ρ</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td>0.715</td>
<td>0.527</td>
<td>0.542</td>
<td>0.990</td>
</tr>
<tr>
<td>median</td>
<td>0.653</td>
<td>0.525</td>
<td>0.447</td>
<td>0.940</td>
</tr>
<tr>
<td>minimum</td>
<td>0.578</td>
<td>0.520</td>
<td>0.351</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Where: $\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$

λ_0: failure rate at start of testing
λ_T: failure rate at end of testing
Integrated Approach: Implementation

- Modified testing process:
 - Additional link for data analysis.
 - Process change and remedial actions.

- Activities and Responsibilities:
 - Evolutionary, stepwise refinement.
 - Collaboration: project & quality orgs.
 - Experience factory prototype (Basili).

- Implementation:
 - Passive tracking and active guidance.
 - Periodic and event-triggered.
 - S/W tool support
Implementation Support

- Types of tool support:
 - Data capturing
 - mostly existing logging tools
 - modified to capture new data
 - Analysis and modeling
 - SMERFS modeling tool
 - S-PLUS and related programs
 - Presentation/visualization and feedback
 - S-PLUS and Tree-Browser

- Implementation of tool support:
 - Existing tools: minimize cost
 - internal as well as external tools
 - New tools and utility programs
 - Tool integration
 - loosely coupled suite of tools
 - connectors/utility programs
 - Overall strategy: Ch.18 (Section 18.4)
SRE Perspectives

- New models and applications
 - Expand from “medium-reliable” systems.
 - New models for new application domains.
 - Data selection/treatment

- Reliability improvement
 - Followup to TBRMs
 - Predictive (early!) modeling for risk identification and management

- Other SRE frontiers:
 - Coverage/testing and reliability
 - Reliability composition and maximization