
Testing Process Case Study
Amber Hardy

CSE 7314 Course Project

Testing Process

This slideshow is a case study for the testing of Novell Audit
logging with Novell Identity Manager Provisioning, a new
component being tested for the first time. The following steps
are covered. The focus will be on testing techniques used.

● Planning and Preparation

● Execution

● Analysis and Follow-up

Planning and Preparation

Product Overview

Novell Identity Manager System Overview

Product Overview

The Novell Identity Manager Provisioning component contains
the following functionality accessible through a user
application web portal:

– Approval Flow for Provisioning

– Enhanced White Pages

– Enhanced Organization Chart

– User Search

– Password Management

– Lightweight User Administration

Product Overview

The following events for Novell Identity Manager Provisioning
should be logged to Novell Audit:

Delete_Entity Workflow_Error Create_Proxy_Definition_Success
Update_Entity Workflow_Started Create_Proxy_Definition_Failure

Workflow_Forwarded Update_Proxy_Definition_Success
Change_Password_Failure Workflow_Reassigned Update_Proxy_Definition_Failure
Change_Password_Success Workflow_Approved Delete_Proxy_Definition_Success

Workflow_Refused Delete_Proxy_Definition_Failure
Forgot_Password_Change_Failure Workflow_Ended
Forgot_Password_Change_Success Workflow_Claimed Create_Delegatee_Definition_Success

Workflow_Unclaimed Create_Delegatee_Definition_Failure
Search_Request Workflow_Denied Update_Delegatee_Definition_Success
Search_Saved Workflow_Completed Update_Delegatee_Definition_Failure

Workflow_Timedout Delete_Delegatee_Definition_Success
Create\Create_Entity Delete_Delegatee_Definition_Failure

Provision_Error
User_Message Provision_Submitted Create_Availability_Success

Provision_Success Create_Availability_Failure
Provision_Failure Delete_Availability_Success
Provision_Granted Delete_Availability_Failure
Provision_Revoked
Provision_Retracted

Product Overview

Novell Audit should log the following data for each event:

– User Application server IP

– Timestamp

– Initiator ID

– Recipient

– Event

– Activity

– Process ID

– Secondary User

Testing Goals

● Verify all Identity Manager Provisioning events are properly
logged to Novell Audit.

● Accuracy must be as close to 100% as possible, because the
data being logged will be used for auditing purposes (such
as for Sarbanes-Oxley).

● Coverage-based testing should be used, since for auditing
purposes the rarely used events might be the most critical
to have logged. Users can't always guess what may be
audited.

● Reports must be generated for easy interpretation of tests.

● Tests must be easily re-run for regression purposes.

Testing Issues

● Logging for the events will not occur until the events
themselves occur. Time is too short to learn how to create
each event and create tests for each event.

● To verify an event is logged, the Audit database has to be
searched for the exact matching entry. This can be time
consuming as well.

● For easy regression, some portion of the tests will need to
be automated.

● Use automation tests that other testers have created to
exercise the various events.

● Create automation to check the database to see if the
events were logged properly.

● A black-box testing approach, of sorts. Run the event test
script without worrying about the details of the test script.

Testing Solution

trigger test script verify events logged
event test script

Finite State Machine
The following common test environment is used as a Finite
State Machine for running all test scripts.

Identity Vault Audit Server User App Portal Client

eDirectory
IDM
iManager

eDirectory
MySQL

JBoss
User App

IDM LOGGING:

Import logging
 schema file
 w/ iManager

IDM :

AUDIT:
Audit plug-in
 for iManager

Audit Engine
MySQL DB
 for Audit

Enable logging
 in User App

Logging
 Platform

Browser

Test cases

● List-based testing is used. Testcases are generated so each
event in the list is logged at least once.

● Partition-based testing is used. Testcases are generated so
at least one scenario that will trigger a particular event
will occur for each partition (partition = event in the list).

● Coverage-based testing is used. Testcases are generated so
each event is covered equally, although some will be
covered more than once for convenience in running the
tests.

Test cases

● Determine which test scripts created by other testers are
needed to trigger which logging events.

● Determine how many times the event will be logged in the
course of the test script.

● Create chart....

Event Script Called # Times Logged
Delete_Entity CreateUser 1
Create_Entity CreateUser 1
Update_Entity DetailEditVerify 1

Change_Password_Failure ChangePassword 1
Change_Password_Success ChangePassword 1

Forgot_Password_Change_Failure ForgotPassword 1
Forgot_Password_Change_Success ForgotPassword 1

Search_Request Search 4
Search_Saved Search 1

Test cases

● More of chart...

Event Script Called # Times Logged
Workflow_Error MyWorkflow 1
Workflow_Started MyWorkflow 2
Workflow_Forwarded MyWorkflow 6
Workflow_Reassigned MyWorkflow 1
Workflow_Approved MyWorkflow 2
Workflow_Refused MyWorkflow 1
Workflow_Ended MyWorkflow 2
Workflow_Claimed MyWorkflow 2
Workflow_Unclaimed MyWorkflow 1
Workflow_Denied MyWorkflow 1
Workflow_Completed MyWorkflow 1
Workflow_Timedout MyWorkflow 1
User_Message MyWorkflow 1
Provision_Error Provisioning 1
Provision_Submitted Provisioning 4
Provision_Success Provisioning 1
Provision_Failure Provisioning 1
Provision_Granted Provisioning 2
Provision_Revoked Provisioning 1
Workflow_Retracted Provisioning 1

Create_Proxy_Definition_Success MyProxyAssignments 1
Create_Proxy_Definition_Failure MyProxyAssignments 1
Update_Proxy_Definition_Success MyProxyAssignments 1
Update_Proxy_Definition_Failure MyProxyAssignments 1
Delete_Proxy_Definition_Success MyProxyAssignments 1
Delete_Proxy_Definition_Failure MyProxyAssignments 1
Create_Delegatee_Definition_Success MyDelegateAssign 1
Create_Delegatee_Definition_Failure MyDelegateAssign 1
Update_Delegatee_Definition_Success MyDelegateAssign 1
Update_Delegatee_Definition_Failure MyDelegateAssign 1
Delete_Delegatee_Definition_Success MyDelegateAssign 1
Delete_Delegatee_Definition_Failure MyDelegateAssign 1
Create_Availability_Success EditAvailability 1
Create_Availability_Failure EditAvailability 1
Delete_Availability_Success EditAvailability 1
Delete_Availability_Failure EditAvailability 1

Testing Model
● To check the Audit database, we will check that the User

Application server IP, Initiator ID, and Event columns
match when checking entries. For simplicity, we will not
check that other data columns match. Manual spot
checking will verify other data columns.

● To ensure the entries did not exist in the database before
the test is run, we will first clear the Audit database of all
entries where the Application server IP, Initiator ID, and
Event columns match those for the specific test.

● Because the nature of our testing views the application
itself as a black box, and we are not concerned with what
goes on inside, the test model diagrams model the test
rather than the application being tested. Following are the
CFG and DDG for our tests.

Control Flow Diagram

Input

Clear
Database

Error /
Terminate

Error /
Terminate

Error /
Terminate

Generate
Report

Run Test
Script

Check
Database

Pass / Test
Completed

Rows = 0# Rows != 0

Script PassedScript Failed

Rows = Expected# Rows != Expected

Data Flow Diagram

Clear
Database

Run Test
Script

Check
Database

Database Info:
- Server
- Name
- Table
- Username
- Password

AppServer

Event

User /
Initiator Test Script # Times

Logged

Error Msg Error Msg Error Msg

Generate
Report

Test Passed
Msg

Error /
Terminate

Error /
Terminate

Error /
Terminate

Rows =/!= 0 Script P/F # Rows =/!=
Expected

Test Execution

Testing Procedure

● New build is created once per week.

● Smoke tests are then run to validate build.

● Audit logging tests are then run.

● Generated reports are posted on the web.

● Defects are entered for any new bugs.

● Old bugs that are now fixed are marked Verified and
Closed.

● Test status is updated.

Testing Tools

● Test Requirements: Test Director

● Test Status: Test Director and Wiki

● Test Scripts: Rational Functional Tester (RFT) using Java

● Test Script Repository: Clearcase

● Testing Reports: RFT, JUnit, and Ant

● Bug Tracking: Bugzilla

Analysis and Follow-up

When to Stop

● All tests must pass at 100%. Because logged data is used
for auditing purposes, we do not have room for any degree
of error.

● Errors missed in the code would be due to ill-formed tests,
but any failures detected by the current tests must be
resolved.

Testing Report

Sample Test Report showing tests pass at 100%

Post-Analysis

● All tests passed.

● Accuracy depends on quality of test. May still be errors
that exist that the tests were not designed to catch.

● Suggestions for improvement.

– Revise tests to check the database using more than just
three columns for more detailed checking.

