Transaction and Transaction Flow

- What is transaction?
 - (User oriented) unit of processing;
 - In graphs: transaction tokens
 - carried by customer/client.
 - Contrast with task (liveness).
 - Processed/handled by system
 - system services and structure
 - routing through the system
 - depend on sys. arch. & token type

- Examples of transactions:
 - Bank transaction/service
 - Database transaction/operation
 - Processes in operating systems
 - Workload in queuing networks
Transaction and System Descriptions

- System architecture
 - Augmenting control flow graphs
 - Node: specific service provided.
 - Link: routing through system
 - Addition of transaction tokens ⇒ relations among tokens.
 - Token sensitive routing possible

- Transactions description
 - Transactions represented by tokens
 - Present at links (and nodes)
 - Transaction control record
 - types of transactions
 - relation to other transactions
 - relation to system architecture
 - priority info., etc.
 - State: value in the record.
Transaction and Queuing

- Transaction/token handling and queuing
 - Multiple tokens to a single link
 - Service decisions = queuing discipline
 - Information carried by tokens:
 - time-stamp/history/priority/etc.
 - may refer to trans. control record

- Queuing principles at single server:
 - Priority: time vs. other:
 - time: FIFO/FCFS, LIFO/stack, etc.
 - other/explicit: SJF, priority#, etc.
 - Pre-emption allowed?
 - (Buffer) bounded or unbounded?
 - Mixture/combination of queues
 - Batch and synchronization
Testing a Single Queue

- Test case design/selection:
 - Conformance to queuing discipline;
 - Boundary conditions:
 - bounded queue with bound B
 - lower bound: around 0 (always)
 - server busy/idle at lower bound
 - upper bounds: around B (bounded Q)
 - Typical case
 - Mixed queues: test case combinations
 - different priority classes
 - FIFO within priority class
 - similar to segment comb. in CFT

- Test case sensitization:
 - Markings and traces
 - to confirm service order
 - (based on arrival/departure order)
 - Discipline under each case
 - Dynamic nature of arrivals
Queuing Model

- As a special case of transaction flow model:
 - Transactions = customers;
 - Node = server; link = queue;
 - Limited splitting/merging;
 - Model = queuing network.

- Model construction:
 - (Existing queuing models)
 - Specifications and workloads;
 - Performance models;
 - Specify queuing discipline;
 - Boundedness.
Queuing Model Testing

- Sensitization:
 - Transaction/workload generator;
 - (Re)use perf./simulation models;
 - Adjustable queues.

- Confirmation and cross validation:
 - Existing oracles.
 - Analytical models:
 - M/M/1 queues and queuing networks.
 - Performance benchmarks.

- Applications:
 - As part of transaction flow testing.
 - Performance testing.
Tokens and Token Synchronization

- Token synchronization
 - Multiple inlink with tokens
 - one token processed: same as CFT
 - multiple processed: synchronization
 - Relating incoming and outgoing tokens

- Synchronization types
 - *Merger* of two incoming tokens:
 - a new outgoing token generated
 - similar to DFT in “A ← B + C”
 - both B and C present to generate A
 - *Absorption* of one token by another:
 - only one incoming token survives
 - similar to DFT in “S ← S + X”
 - both S (orig) and X present
 ⇒ S (updated)
 - Graph: node with token in it
 - Multi-way merger/absorption similar
Synchronization Testing

- Correct tokens
 - Correct input tokens
 - Merger or absorption?
 - Corresponding correct output tokens
 - What we did already in DFT

- Synchronization of arrivals:
 - Combinations of input token in different arriving order
 - Example with two way synchronization:
 - nothing arrives ⇒ no output
 - one arrives ⇒ no output
 - two arrive (3 cases: A-B, B-A, AB)
 ⇒ correct token generated
 - Multi-way synchronization:
 - similar steps, but more cases
 - staged vs. single synchronization
 - trade-offs: cost vs. accuracy
 - Combination with correct tokens