Software Metris and Quality Engineering
CSE 8314 — Fall 2013

Prof. Jeff Tian, tian@lyle.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.lyle.smu.edu/~tian/class/8314.13f

Module I: Metrics/QE Overview

- About CSE 8314

- Software Measurement

- ESE, GQM, etc.

- Comparison, Evaluation and M. Theory
Goal of Software Measurement

To achieve the goal of controlled software development, we need to:

- Develop an *engineering* discipline;

- Measure and evaluate the working product;

- Construct a *scientific* model for program measurement:
 - Techniques from other disciplines;
 - Develop new techniques if necessary;
 - Basic questions:
 - What to measure: goal & environ.
 - How to measure it: metrics & tools
 - Selection and validation

- See also measurements and models from Tian/SQE Chapter 19.
How Does CSE 8314 Fit In?

• (Area I) M/QE fundamentals:
 ▶ Generic concepts, important ideas
 ▶ Overall framework.

• (Areas II&III) basic metrics:
 ▶ External metrics
 ▶ Internal metrics
 ▶ Relations, classification, usage

• (Area IV) Metrics evaluation:
 ▶ Empirical ⇒ formal model.
 ▶ Formal models for metrics evaluation.

• (Area V) New frontier:
 ▶ Hypothesis testing using metrics
 ▶ Bigger picture (ESE) + new applications/frontier
CSE 8314 Overview

- (Area I) M/QE fundamentals:
 - Generic concepts, important ideas
 - Overall framework.

- General concepts
 - Measurement, ESE, and SE
 - Measurement of software vs. measurement of other objects
 - Measurement "maturity" and spectrum

- Overall framework.
 - GQM/QIP/EF
 - Other frameworks

- Mathematical foundation
 - Measurement theory
 - Types and levels of measurement
CSE 8314 Overview

• (Areas II&III) basic metrics:
 ▶ External metrics
 ▶ Internal metrics
 ▶ Relations, classification, usage

• External metrics
 ▶ Quality: reliability, safety, dependability, usability, etc.
 ▶ Cost related
 ▶ Time/schedule/activity/environment/etc.
 ▶ Areas and contexts: PPP

• Internal metrics
 ▶ Complexity
 ▶ Dimensions and classification of complexity metrics

CSE 8314 Overview

• (Area IV) Metrics evaluation:
 ▶ Empirical ⇒ formal model.
 ▶ Formal models for metrics evaluation.

• Empirical evaluation
 ▶ Data and statistical analysis
 ▶ Other empirical evidence/corroboration

• Formal models for metrics evaluation.
 ▶ Historical development
 ▶ Tian-Zelkowitz model
 ▶ Other recent development
CSE 8314 Overview

- (Area V) New frontier:
 - Hypothesis testing using metrics
 - Bigger picture (ESE) + new applications/frontier

- Hypothesis testing using metrics: Koru-Tian and other works

- ESE, the bigger picture
 - ESE ideas and guidelines
 - Applications and examples

- New applications/frontier/development
 - Traditional: commercial, telecom, etc.
 - New: net-centric, SOA, cloud, etc.
Complexity and Other Measurement

Basic assumption: The lower the complexity, the more desirable:

- cheaper to build;
- easier to maintain;
- more reliable;
- ...

Usage of Complexity Measurement:

<table>
<thead>
<tr>
<th>activity</th>
<th>time</th>
<th>nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>assessment</td>
<td>a posteriori</td>
<td>passive</td>
</tr>
<tr>
<td>prediction</td>
<td>a priori</td>
<td>passive</td>
</tr>
<tr>
<td>control</td>
<td>persistent</td>
<td>active</td>
</tr>
</tbody>
</table>

Other Measurement: Internal and external ones (next).
Internal/External Measures

Internal Measures: depend on programs only. complexity measures ⊆ internal measures;

External Measures: depend also on other external factors — so called -lities.

Relations: correlated but not uniquely determined. To use internal measures to predict external measure, we need:

- Discover appropriate internal measures;
- Establish predictive relations;
- Use and validate predictions.
Measures and Dimensions

Complexity measures are multi-dimensional because of:

1. Multi-facet internal organization:
 - Presentation;
 - Control;
 - Data.

2. Multi-purpose external usage under different activities.
 - Assessment: Basili’s GQM;
 - Prediction: Boehm’s COCOMO;
 - Control: Boehm’s spiral.
Software Measurement

- In the measurement spectrum: "maturing"

- Example: testing evaluation
 - Test results and expenditure.
 - Test cases and measurement.
 - Internal measurements: size/complexity/etc.
 - Environmental data: process/people/setup
 - Evaluation results: reliability.

- Data/analysis from other phases:
 - Product: code, documents etc.
 - external: quality, cost, schedule etc.
 - Process: entities/relations/environment
 - People: experience etc.
 - Various assessment/prediction/improvement.
Software Product Measurement

- Product specific (static):
 - Code, test case, document
 - Structure vs. information flow
 - Control/data/presentation
 - Metrics and data collection
 - ESE: product quality/etc. questions?

- Execution specific (dynamic):
 - Path verification (white-box)
 - Usage to component mapping (black-box)
 - Measurement along the path
 - Usage of the measurement data
 - ESE: performance/reliability/etc.?
Other Software Measurement

- Process characteristics
 - Entities, relationships, and integration
 - Preparation, execution and followup

- People characteristics
 - Skills and experience
 - Roles: planners/developers/testers
 - Process management and teams

- Environmental characteristics
 - Hardware/software environment
 - Product/market environment
Measurement and ESE

- **Empirical Software Engineering (ESE):** Applying empirical techniques/methods to solve software engineering problems.

- **Objects of study:**
 - Observation of SE activities.
 - Case studies in SE.
 - Controlled experiments.

- **Analysis and conclusions:**
 - Data from the above activities.
 - Statistical and other analyses.
 - Conclusions draw based on data/analyses.

- Measurement plays a central role in ESE.
Software Engineering Perspective

- Key components of S/W Eng.
 - Methods and processes
 - Formal foundations (math/theory)
 - Experimentation (scientific)

- Methods and process
 - Methods and methodologies
 - structured programming, OO, SOA
 - specialized methods
 - specification: formal vs informal
 - testing: black-box/white-box/random
 - Process models (and measurement)
 - Mixing method and process
 - agile, XP, TDD, etc.
 - clean room example
 - 7313, 7314 and other MS/CS courses.
Software Engineering Perspective

- Formal foundations
 - Mathematics/logic/statistics
 - formal specifications
 - program verification
 - statistical models
 - Computer science
 - language and ADT \Rightarrow OO
 - systems/tools/CASE
 - Formal models on metrics: Area IV.

- Experimentation (scientific)
 - Trace/case studies
 - Controlled experiment
 - Measurement and analysis
 - Empirical validation
 - Observation-based vs. goal-oriented
Software Processes

- Process Variations:
 - Waterfall: sequence and dependencies;
 - Iterative: incremental, divide & conquer;
 - Spiral: risk management;
 - Mixed/synthesized.

- Measurement and analysis throughout different components of the products and processes.

- Relation to CSE 7313, 7314, etc.
ESE in SE Activities

- Observational studies:
 - Passive observations of industrial practice, etc.
 - Try to draw preliminary conclusions based on observations and related data.
 - Multiple observations \Rightarrow validation.

- Case studies:
 - Semi-active.
 - Pre-set study goals.
 - Conclusions need further validation.

- Controlled experiments:
 - Active design and experimentation.
 - Closest to scientific experiments.
 - Solid conclusions.
Measurement Framework: GQM

• Background:
 ▶ Software Engineering Laboratory
 ▶ TAME projects
 ▶ Key personal: Basili et al.

• Software Engineering Laboratory
 ▶ NASA/GSFC
 ▶ University of Maryland
 ▶ Computer Sciences Corp.
 ▶ 1st SEI process award recipient
 ▶ Software measurement and ESE:
 – among the first ESE studies
 – software measurement and analysis
 – goal-question-metric (GQM) paradigm
 – experience factory (EF)
GQM

- GQM: what is it?
 - Goal: goal of the (measurement) study.
 - Questions: questions related to goals.
 - Metrics: metrics answering questions.

- GQM background/foundations:
 - Goal oriented approach.
 - Measurement based.
 - Scientific experimentation.
 - Hierarchy or paradigm: diagram.

- Relation to ESE:
 - Can serve as general guidelines for ESE.
 - Related EF: similar to scientific labs in ESE.
GQM and EF

• EF: What is it?
 ▶ Experience Factory
 ▶ Separation of concerns
 ▶ In connection with GQM/TAME
 ▶ In ESE: Similar to scientific labs that conducts scientific experiments.

• Experience Factory
 ▶ Input from product organization
 ▶ Output to product development
 ▶ Internal organization
 ▶ Implementation in NASA/SEL
GQM/EF Recent Development

• Research activities:
 ▶ New NSF-funded Center:
 – Univ. Maryland and USC (Boehm)
 – GMQM and other activities
 ▶ Fraunhofer Institute and Centers
 ▶ Others

• GQM extensions:
 ▶ GMQM: success model
 ▶ Specialized guidelines
 – Kitchenham et al.
 – Tian measurement/model, etc.
 ▶ More emphasis on scientific experimentation

• EF beyond NASA/SEL.
GQM/EF Work at SMU

- NSF Net-Centric and Cloud Software and Systems I/UCRC
 - SMU/UNT/UTD founding members
 - EF for industrial partners of I/UCRC
 - Quality/dependability/performance
 - Application domain:
 - net-centric, service-oriented, and
 - more recently cloud computing

- MRI and other projects
 - Instruments for dependability evaluation for CCS (cloud computing systems)
 - Again, a kind of EF

Measurement: Comparison

- Physics (and other physical sciences)
 - Motion: static and dynamic aspects
 - distance metrics
 - time metrics
 - energy, force, etc.
 - other metrics: speed, acceleration etc.
 - Similar for other areas in physics:
 - heat, sound, electricity, atomic/nuclear

- Some common characteristics
 - Well-defined, quantitative metrics:
 - usually interval or ratio type (later)
 - "unit": important standard of references
 - Importance role of measurement and data in "scientific" experiment: observation, hypothesis testing.
 - Theory and models: both basis and guide
Measurement: Comparison

- Other "hard" sciences:
 - Chemistry: mostly quantities
 (other focus: reactions, pathways, etc.)
 - Biological/life sciences:
 – similar role of measurement
 - Geo-/astro-/etc.
 – important role of measurement

- Engineering:
 - Mechanical/civil/chemical/electrical/etc.
 - Emerging: measurement also maturing.
 - Measurement: Similar to foundational scientific disciplines

- Software measurement: "maturing" towards these

Measurement: Comparison

- Psychology:
 - Example: IQ test and IQ score
 - Less well-defined
 - subjective vs objective
 - data validity and interpretation
 - usually unit-less
 - Other quantitative measurements and statistics
 - Non-quantitative: classification/type

- Other "soft" sciences and disciplines:
 - Social sciences, humanities, arts
 - Type of measurement as a distinguishing factor

- Software measurement: more "mature" than these?
Measurement in ESE

- Measurement: central activity in ESE
 - context of measurement/expr/study
 - measurements associated with different experimental designs
 - measurement and data collection
 - measurement result analysis
 - measurement/analysis result presentation, interpretation, and drawing conclusions

- Interpreted as measurement activities:
 - definition: context, design
 - gathering: data collection
 - analysis/followup:
 - analysis, presentation, interpretation
Measurement: Evaluation

- Measurement typically used to evaluate SE artifacts/activities.

- Also need to evaluate measurements/metrics themselves:
 - properly defined?
 - properly used?
 - lead to useful results?

- Use of evaluation results:
 - selecting existing measures/metrics
 - proposing new ones
 - under what context?
Measurement: Evaluation

- Types of metrics evaluation:
 - self evaluation
 - empirical evaluation
 - formal model based evaluation

- Self evaluation of new metrics:
 - when proposed/defined
 - demonstrate the use & usefulness
 - possible subjective bias
 - limited scope & validity
Measurement: Evaluation

- **Empirical evaluation of metrics:**
 - a set of given metrics
 - empirical study set up
 - focus: how these metrics work
 - other performance measures not subjected to evaluation
 - typical evaluation objects:
 - internal (complexity) metrics

- **Evaluation based on formal models:**
 - based on empirical studies/evidences
 - generalized theory/models
 - development: after many empirical evaluation studies

- More later (Area IV of CSE 8314).
Measurement Theory

• Best book on the subject:

• Formalization of measurement:
 ▶ R: relation
 reflexive, symmetric, transitive, complete?
 ▶ f(x): measurement as functional mapping
 ▶ aRb ↔ f(a) ≠ f(b)

• Basic questions
 ▶ representation: defines mapping/scale
 ▶ meaningfulness: truth unchanged by admissible transformations
Measurement Theory

- Scale types defined by admissible transformations

- Some common scale types (from strongest to weakest):
 - absolute: \(\phi(x) = x \), e.g., counting
 - ratio: \(\phi(x) = \alpha x, \ \alpha > 0 \), e.g., mass, temperature (K), time interval
 - interval: \(\phi(x) = \alpha x + \beta, \ \alpha > 0 \), e.g., temperature (C, F), time (calendar), IQ standardized score
 - ordinal: \(x \geq y \iff \phi(x) \geq \phi(y) \), e.g., preference, hardness, air quality, IQ raw score
 - nominal: any one-to-one, label alt plans, CSE/EMIS/EE/etc course code