Software Metris and Quality Engineering CSE 8314 — Fall 2013

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8314.13f

Module III: Internal Metrics

- Metrics: Internal vs. External
- Internal Size Metrics
- Internal Complexity Metrics
- Other Internal Metrics

Software Measurement

Basic assumption: The lower the complexity or other metrics values, the more desirable:

- ▷ cheaper to build;
- ▷ easier to maintain;
- ▷ more reliable;
- $\triangleright \ldots$

Desirable? can it be quantified?
- using (target) external metrics as
output/response/dependent variables

Internal (and some external) metrics as input/predictor/stimulus/independent variables

Internal Measures: Why?

Difficulties with external metrics

Need: predictors, leading indicators, controllers, etc.

Internal metrics as answers

- ▷ must be available earlier
- ▷ controllability and observability
- \triangleright finer granularity

Granularity: "whole, parts and details"

Counting: unique vs all (frequency)

Internal Measures: What?

Complexity:

general terms, often to indicate all internal metrics

- complexity dimensions
 - control (algorithm, decisions)
 - data
 - presentation (organization)
- ▷ many metrics, long history

Other metrics

- ▷ size, often as separate metrics
- \triangleright information contents
- ▷ volume
- ▷ algorithmic
- > non-code-based metrics

Theory: Complexity Dimensions

Presentation: Physical presentation for readers that has no effect on functionality.

Control: Instructions, control structures, and control dependencies.

Data: Data items, data structures, and data dependencies.

Comments:

- \triangleright Control + Data = Abstract;
- ▷ Orthogonal dimensions.

Theory: Measurement Levels

Lexical: Token based measure computation;

Syntactic: Directly syntax based measure computation;

Semantic: Semantic analysis needed for measure computation.

Comments:

- \triangleright 27 possible points in a 3-D space;
- \triangleright Space proximity \approx Measure similarity;

Measurement Level

- Measurement level: depending on the computational model for the metrics, lexical, syntactic, semantic
- Lexical
 - ▷ token based metrics
 - ▷ e.g. various counts: LOC, variables, etc.
- Syntactic
 - Ianguage syntax used in computation
 - ▷ e.g., statement count
- Semantic
 - ▷ language semantics used in computation
 - \triangleright e.g., dependency (DU pair), naming, etc.

Size Metrics

- Typically lexical or syntactic levels
- Lexical
 - \triangleright token based metrics
 - ▷ e.g. various counts: LOC, variables, etc.
- Syntactic
 - Ianguage syntax used in computation
 - ▷ e.g., statement count

Semantic

- Ianguage semantics used in computation
- ▷ e.g., dependency (DU pair), naming, etc.

Size Metrics

- Language factor:
 - ▷ Table 4.1 1991 Gearing Factors in SME (p.37)
 - ▷ Table 4.2 2005 Gearing Factors in SME (p.38)
 - ▷ IBM work: q-code equivalence
- Change, reuse, refactoring, etc.
 - ▷ CSI vs SSI: rational
 - \triangleright reuse: verbatim, (< 25%)modified, (\geq 25%)modified, new
 - \triangleright use of macros, others
- consistent counting rules needed

Size Metrics: FP

- number of external user inputs, inquiries, outputs, and master files to be delivered by the development project
- Comparison to SLOC variations
 - ▷ availability in time
 - black-box/functional view/focus
- counting rules and standards
 - ▷ weights and weighted sums are used
 - ▷ example SME Table 4.3 (p.42)

Control Complexity Metrics

- Lexical
 - \triangleright control types and related count
 - \triangleright e.g. #GOTOs, #decisions, #branches etc.
- Syntactic
 - \triangleright concatenation, nesting, GOTO
 - ▷ e.g., nesting level
- Semantic
 - ▷ control dependency
 - ▷ e.g., logical/algebraic sensitization

Control Complexity Metrics

- A few famous metrics
- McCabe's cyclomatic complexity

$$\triangleright v = e - n + 2p$$

-e edges, n nodes, p connected components

$$\triangleright v = c + 1$$

- -c predicates for single connected graph
- \triangleright simple rule: loop similar to branching
- ▷ poor correlation with effort
- Knot count
 - \triangleright total # of unavoidable knots when branches drawn on one side of the sequential flow
 - ▷ un-structuredness of a program
 - kc=0 for structured programs

Data Complexity Metrics

- Lexical
 - ▷ token based metrics
 - \triangleright e.g. variables (unique vs freq.), etc.

• Syntactic

- ▷ scoping (and other) rules used
- ▷ e.g., visible variable set metrics

• Semantic

- ▷ data dependency
- ⊳ e.g., DU pair, etc.

Interface Complexity Metrics

- both control and data aspect
- Mostly lexical: counting by name, type, freq., etc.
 - \triangleright function + procedure calls
 - number of input/output statements
 - > number of input/output parameters
 - \triangleright often used in FP and other metrics
- information flow metrics:
 - \triangleright ifm = (fan-in \times fan-out)²
 - ▷ flow into/out of a procedure
 - ▷ also include global data structure accessed/updated

Volume Complexity Metrics

- both control and data aspect, often based on information theory
- Halstead Software Science metric: most famous, 1st systematic treatment

$$\begin{array}{ll} \mbox{main name \& formula (or definition)} \\ \hline \eta_1 & \mbox{number of distinct operators} \\ \hline \eta_2 & \mbox{number of distinct operands} \\ \hline \eta_2 & \mbox{number of operands} \\ \hline N_1 & \mbox{total number of operators} \\ \hline N_2 & \mbox{total number of operands} \\ \hline V & \mbox{program volume} \\ \hline V & \mbox{program volume or min possible volume} \\ \hline V^* & \mbox{potential volume or min possible volume} \\ \hline E & \mbox{programming effort } E &= V^2/V^* \\ & \mbox{(approximation)} \\ \hline E &= \frac{\eta_1 N_2 (N_1 + N_2) \log_2(\eta_1 + \eta_2)}{2\eta_2} \\ \end{array}$$

• HAC metrics by Bail-Zelkowitz

OO Complexity Metrics

- CK metrics by Chidamber and Kemerer
 - WMC: weighted methods per class
 - ▷ DIT: depth of inheritance tree
 - ▷ NOC: number of children
 - ▷ CBO: coupling between object classes
 - ▷ RFC: response for class
 - LCOM lack of cohesion on method
- Nominal values/ranges for CK metrics

Presentation Complexity Metrics

- Typically lexical or syntactic levels
- Lexical
 - \triangleright presentation token metrics
 - \triangleright e.g. comments, blanks, etc.

• Syntactic

- \triangleright rules used in presentation
- \triangleright e.g., indentation rules, etc.

Semantic

- ▷ meaning in presentation
- ▷ e.g., naming, aliasing

Hybrid Complexity Metrics

- Some example earlier: interface complexity (FP, information flow), and Halstead's software science metrics
- Other ad hoc metrics
 - ▷ based on logical analysis
 - based on statistical analysis
 - primarily PCA
- other possibilities
 - ▷ multiple metrics as profiler
 - ▷ multiple models
 - combined models vs metrics vs results

Other Complexity Metrics

- algorithmic
 - ▷ work by Chaitin
 - > minimal algorithmic representation
 - computational complexity linkage
- non-code-based metrics
 - ▷ measuring specs, design, etc.
 - ▷ FP-like ideas
 - Card design complexity metrics
 - high/module-level structural/data complexity