Software Metris and Quality Engineering

CSE 8314 — Fall 2013

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8314.13f

Module IV: Formal Models for Metrics **Evaluation**

- Formal Models/Axioms for Metrics Evaluation
- Tian-Zelkowitz Approach
- Application and Validation;

Overview: Measurement

To achieve the goal of controlled software development, we need to:

- Develop an engineering discipline;
- Measure and evaluate the working product:
- Construct a scientific model for program measurement:
 - > Techniques from other disciplines;
 - Develop new techniques if necessary;
 - ▶ Basic questions:
 - What to measure: goal & environ.
 - How to measure it: metrics & tools
 - Selection and validation

Overview: Our Solution Strategy

Need a *scientific* model of program complexity:

- 1. Develop a *theory* of program complexity to organize empirical knowledge;
- 2. Develop a technique for measure evaluation and selection to extrapolate measurement activities to new applications;
- 3. Validate the model using data from NASA Software Engineering Laboratory.
- Comments: The theory is a systematic extension to earlier studies by Prather, Fenton and Whitty, and Weyuker.

Previous Work: Prather

Prather's axioms:

```
\triangleright m(S_1; S_2; \ldots; S_n) \geq \sum_i m(S_i)
\triangleright 2(m(S_1) + m(S_2))
   > m(if P then S_1 else S_2)
   > m(S_1) + m(S_2)
\triangleright 2m(S) \ge m(while \ P \ do \ S) > m(S)
```

- Observations/discussions:
 - ▷ earliest attempt on axiomatic model
 - > some intuition captured:
 - e.g., interactions
 - ▷ limited scope
 - > justification for some axioms?

Previous Work: Fenton

• Fenton's hierarchical complexity:

$$b m(seq(F_1,...,F_n)) = g_n(m(F_1),...,m(F_n)) b m(F(F_1 on x_1,...,F_n on x_n)) = h_F(m(F),m(F_1),...,m(F_n))$$

- Observations/discussions:
 - general framework
 - too general?
 - ▷ contrast with Prather's work
 - > relation to later work
 - add specifics
 - measurement theory based work

Previous Work: Weyuker

• Weyuker's Desirable Properties:

```
1. (\exists P, Q) (\mathcal{V}(P) \neq \mathcal{V}(Q))
```

2.
$$\{P, \mathcal{V}(P) = c \}$$
 is finite

3.
$$(\exists P, Q) \ (P \neq Q) \land (\mathcal{V}(P) = \mathcal{V}(Q))$$

4.
$$(\exists P, Q)$$
 $(P = Q) \land (\mathcal{V}(P) \neq \mathcal{V}(Q))$

5.
$$(\forall P, Q)$$

 $(\mathcal{V}(P) \leq \mathcal{V}(P; Q) \wedge \mathcal{V}(Q) \leq \mathcal{V}(P; Q)$)

6.
$$(\exists P, Q, R)$$

 $(\mathcal{V}(P) = \mathcal{V}(Q) \land \mathcal{V}(P; R) \neq \mathcal{V}(Q; R))$

7.
$$(\exists P, Q) \ (P = perm(Q) \land \mathcal{V}(P) \neq \mathcal{V}(Q))$$

8.
$$(\forall P) \ (\forall x, y) \ \mathcal{V}(P) = \mathcal{V}(P_y^x)$$

9.
$$(\exists P,Q) \ (\mathcal{V}(P) + \mathcal{V}(Q) < \mathcal{V}(P;Q) \)$$

Previous Work: Weyuker

- About Weyuker's properties:
 - more systematic treatment
 - ▷ inspired/lead to many followup work
 - positive: refinement
 - negative: counter examples
 - other: development & alternatives
- Tian/Zelkowitz as followup:
 - merit of Weyuker's properties
 - some universally satisfied
 - basis for universal axioms
 - > some for certain types of metrics
 - classification?
 - > a theory based on the above

Overview: Tian/Zelkowitz

- Tian/Zelkowith Theory/Framework
- Axioms: Define program complexity and state common properties.
- **Dimensionality Analysis:** provide the basis for metrics classification
 - Aspects or dimensions:presentation, control, data;
 - ▶ Levels: lexical, syntactic, semantic.
- Classification Scheme: Define mutually exclusive and collectively exhaustive classes.

Theory: Axiom Overview

Complexity: Relationship between program-pairs;

Comparability: Programs with identical functionality are comparable (A1);
Composite programs are comparable to their components (A2).

Monotonicity: Sufficiently large programs will become more complex (A3).

Measurability: Measures on programs must agree with underlying complexity (A4).

Diversity: Distribution of measured complexity must not form a single cluster (A5).

Theory: Defining Complexity

Definition: A complexity ranking \mathcal{R} is a binary relation on programs. Given programs Pand Q, we interpret $\mathcal{R}(P,Q)$ as P being no more complex than Q.

 $\mathcal{C}(P,Q)$ iff $\mathcal{R}(P,Q) \vee \mathcal{R}(Q,P)$.

- ▷ It is internal to the programs;
- Related empirical to external properties;
- > Very broad definition, need further qualification and quantification.

Theory: Comparability Axioms

Axiom A1:
$$(\forall P, Q)$$
 ($\boxed{P} = \boxed{Q} \Rightarrow \mathcal{C}(P, Q)$) i.e., functionally equivalent programs are comparable.

Axiom A2: $(\forall P, Q)$ $(IN(P, Q) \Rightarrow C(P, Q))$ i.e., a composite program is comparable with its components.

- $\triangleright \mathcal{R}$ is self-reflexive;
- $\triangleright \mathcal{R}$ is not transitive.

Theory: Monotonicity Axiom

• Axiom A3: $(\exists K \in \mathcal{N})(\forall P, Q)$ $((IN(P,Q) \land (dist(P,Q) > K)) \Rightarrow R(P,Q))$ i.e., sufficiently large programs will not be ranked lower in complexity.

- ▷ General trend must be followed;
- ▶ Local deviations allowed.

Theory: Measure Definition Axiom

Definition: A complexity measure \mathcal{V} is a quantification of complexity ranking \mathcal{R} . \mathcal{V} maps programs into real numbers:

$$\mathcal{V}: \mathbf{U} \Rightarrow \Re$$

Axiom A4: $(\forall P, Q)$ $(\mathcal{R}(P, Q) \Rightarrow \mathcal{V}(P) \leq \mathcal{V}(Q)$) i.e., a measure must agree with the ranking it is approximating.

Non-Axiom: Commonly assumed by other complexity models:

$$(\forall P, Q) \ (\mathcal{V}(P) \leq \mathcal{V}(Q) \Rightarrow \mathcal{R}(P, Q))$$

- Incomparable cases;
- Non-transitive cases;

Theory: Distribution Axiom

Requirement: Measure values must not cluster around one single dominating point.

Axiom A5:
$$(\forall k \in \Re)(\exists \delta > 0)$$
 $(|\mathbf{U} - \{P : \mathcal{V}(P) \in [k - \delta, k + \delta]\}| = |\mathbf{U}|)$

Axiom A5':
$$(\forall k \in \Re)(\exists \delta > 0)$$

$$\sum_{P,\mathcal{V}(P) \in [k-\delta,k+\delta]} prob(P) < 1$$

Rationale: A single dominating cluster is disallowed because it fails to achieve the goal of providing comparison for programs.

Theory: Complexity Dimensions

Presentation: Physical presentation for readers that has no effect on functionality.

Control: Instructions, control structures, and control dependencies.

Data: Data items, data structures, and data dependencies.

- > Orthogonal dimensions.

Theory: Measurement Levels

Lexical: Token based measure computation;

Syntactic: Directly syntax based measure computation;

Semantic: Semantic analysis needed for measure computation.

- ≥ 27 possible points in a 3-D space;
- \triangleright Space proximity \approx Measure similarity;
- ▷ Dividing control and data dimensions: 1. count, 2. structure, 3. dependency.

Theory: Vertical Classification

Classification based on computational models used:

- Depend only on syntax trees of programs? Yes, Abstract. No, non-abstract.
- ▷ Invariant to renaming? Yes, Functional. No. non-functional.

$$\label{eq:abstract} \text{All} \left\{ \begin{array}{l} \text{Abstract} \left\{ \begin{array}{l} \text{Functional} \\ \text{Non Functional} \end{array} \right. \\ \\ \text{Non Abstract} \end{array} \right.$$

Theory: Vertical Classification Example

```
\mathsf{AII} \left\{ \begin{array}{l} \mathsf{Abstract} \\ \left\{ \begin{array}{l} scan, stmt, ss, fp, \\ cyc, knot, du, hac, ac \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{Functional} \\ knot, du, hac, ac \end{array} \right\} \\ \mathsf{Non Functional} \\ \left\{ scan \right\} \\ \\ \mathsf{Non Abstract} \\ \left\{ lc \right\} \end{array} \right.
```

Theory: Hierarchical Classification

Classification based on complexity relations of component-composite programs:

- > Sensitive to context? Yes, interactional. No, context free.
- Depend only on building element but not organization?

Yes, Primitive. No, non-primitive.

 ▷ Capture both interface and internal? Yes, Overall. No, non-overall.

$$\label{eq:all_primitive} \text{All} \left\{ \begin{array}{l} \text{Context Free} \left\{ \begin{array}{l} \text{Primitive} \\ \text{Non Primitive} \end{array} \right. \\ \text{Interactional} \left\{ \begin{array}{l} \text{Overall} \\ \text{Non Overall} \end{array} \right. \end{array} \right.$$

Theory: Hier. Classification Example

 $\left\{ \begin{array}{l} \text{Context Free} \\ \left\{ \begin{array}{l} scan, stmt, \\ ss, cyc, knot \end{array} \right\} \\ \text{All} \\ \left\{ \begin{array}{l} scan, stmt, \\ ss, cyc, knot \end{array} \right\} \\ \text{Non Primitive} \\ \left\{ \begin{array}{l} \text{Overall} \\ \left\{ du, hac, ar \right\} \\ \text{Non Overall} \\ \left\{ fp, du, hac, ar \right\} \end{array} \right. \\ \left\{ \begin{array}{l} \text{Overall} \\ \left\{ fp \right\} \end{array} \right. \\ \end{array}$

Evaluation: Problems and Solutions

Problem: Evaluation of complexity measures;

Assumption: Measures satisfy Axiom A4;

View: Measures as points in a measure space;

Solution Strategy:

- > Define feasible region by using axioms and classification as boundary conditions;
- > Derive scales for measures within the feasible region;
- Aggregate evaluations and select the optimal measure.

Evaluation: Boundary Conditions

Axioms as testable predicates:

BC₁. Axiom A1:
$$(\mathcal{D}(\mathcal{V})$$
— domain of $\mathcal{V})$ $(\forall P, Q)(P = Q \land P \in \mathcal{D}(\mathcal{V})) \Rightarrow Q \in \mathcal{D}(\mathcal{V})$

 BC_2 . Axiom A2:

$$(\forall P, Q)((\mathsf{IN}(P,Q) \vee \mathsf{IN}(Q,P)) \land P \in \mathcal{D}(\mathcal{V}))$$

BC₃. Modified Axiom A3:

$$(\exists K)(\forall P,Q) \ (dist(P,Q) > K) \Rightarrow \mathcal{V}(P) \leq \mathcal{V}(Q)$$

BC₄. Assumed true.

BC₅. Modified Axiom A5:

$$(\forall k \in \Re)(\exists \delta > 0) \ prob(\mathcal{V}(P) \in [k-\delta, k+\delta]) < 1$$

Evaluation: Screening Using Axioms

Example Measure: $V(P) = 1 - \frac{1}{s(P)}$, where s(P) is the statement count of P.

Screening:

- \triangleright **BC**₁ is satisfied because $\mathcal{D}(\mathcal{V}) = \mathbf{U}$;
- ▶ BC₂ same as above;
- \triangleright **BC**₃ is satisfied because:

$$(\forall P, Q) \quad (0 < s(P) < s(Q)) \Rightarrow$$

$$\left(1 - \frac{1}{s(P)} < 1 - \frac{1}{s(Q)}\right)$$

 \triangleright **BC**₅ is not satisfied because:

$$prob(\mathcal{V}(P) \in [1 - \delta, 1 + \delta]) = 1$$

Result: Reject \mathcal{V} due to violation of \mathbf{BC}_5 .

Evaluation: Screening Using Classes

BC₆: Appropriate class depends on goals.

Goal 1. Documentation vs. comprehension.

Target: Non-abstract class.

Reject: Abstract class.

Goal 2. Object code size assessment.

Target: Abstract class.

- ▶ Total line count might be acceptable;
- ▷ Blank line count is rejected.

Goal 3. Programming effort prediction.

Target: Both abstract & non-abstract classes.

Reason: Both contribute to effort.

Evaluation: Monotonicity Scale

Assumption: Prefer measures that better approximates monotonicity;

Need to capture the *extent* and *frequency* of non-monotonic deviations:

Scale S₁: The monotonicity scale is $\langle T, p_m \rangle$, where T is the period of monotonicity:

$$T = \min_{K} (dist(P, Q) > K \Rightarrow \mathcal{V}(P) \leq \mathcal{V}(Q))$$

and p_m is the conditional probability of nonmonotonic component-composite pairs:

$$p_m = prob(\mathcal{V}(P) > \mathcal{V}(Q) \mid IN(P,Q))$$

Evaluation: Distribution Scale

Assumption: Uniform distribution desirable.

Need to capture:

- Significant points on the scale;
- ▶ Uniformity of these points.

Uniformity Scale S₃: For measure V, $\epsilon > 0$, $\delta > 0$, and $p_k = prob(k\delta \leq \mathcal{V}(P) < (k+1)\delta)$, $\mathbf{S}_3 = \langle n, d \rangle$, where n and d are the cardinality and the normalized s.d. of $\{p_k \mid p_k > \epsilon\}$.

$$d = \begin{cases} 0 & \text{if } n = 0 \\ \sqrt{\frac{\sum_{k} (1 - np_k)^2}{n}} & \text{otherwise} \end{cases}$$

Evaluation: Scale & Dominance Relation

Global Scaling Vector \mathcal{G} is defined on relevant scales $\{\mathbf{S}_i\}$ with $\mathcal{G}(\mathcal{V})[i]$ defined successively as:

$$\mathcal{G}(\mathcal{V})[i] = \begin{cases} \mathbf{S}_j(\mathcal{V})[k] & \text{if opt} = \max \\ -\mathbf{S}_j(\mathcal{V})[k] & \text{if opt} = \min \end{cases}$$

until all individual scaling dimensions $\mathbf{S}_{j}(\mathcal{V})[k]$ are exhausted.

Dominance Relation: A measure V_i is said to dominate another measure \mathcal{V}_j if

$$(\mathcal{G}(\mathcal{V}_i) \geq \mathcal{G}(\mathcal{V}_j)) \wedge (\exists k) (\mathcal{G}(\mathcal{V}_i)[k] > \mathcal{G}(\mathcal{V}_j)[k])$$

Elimination: All dominated measures are eliminated.

Evaluation: Objective Function

Assess the importance and trade-off among \mathbf{S}_j to form weight vector \mathcal{W} .

$$(\forall i, j, k) \ \mathcal{W}(\mathcal{V}_i)[k] = \mathcal{W}(\mathcal{V}_j)[k] = \mathcal{W}[k]$$

Example: the weight for \mathbf{S}_1 could be $d \times p_c$.

The selection problem reduces to the constrained optimization problem:

$$\max_{i} \left(f_i = \sum_{j} \mathcal{G}(\mathcal{V}_i)[j] * \mathcal{W}[j] \right)$$

such that:

 \mathcal{V}_i satisfies all boundary conditions.

Application and Model Validation

- 1. Application domain: risk identification for projects in NASA/SEL;
- 2. Pilot experiment: apply the scientific model to select complexity measures;
- 3. Data collection: run multiple applications and collect results:
- 4. Analyze resulting data-points to validate the scientific model.

Application: Risk Identification

Risk in software decisions:

- Multiple alternatives;
- Uncertainty about future development;
- ▶ Large investment;
- ▷ Significant consequences.

Risk Identification via CTA (Selby&Porter):

- → High cost: highest quartile (80:20 rule);
- ▶ Basis: historical data;
- ▶ Methodology: classification trees.

Application: CTA Prediction Example

Predictions are made based on:

- > Sample module measurement data:

	Modules				
	m_1	m_2	m_{3}	$m_{ extsf{4}}$	m_{5}
cyclomatic complexity	3	8	13	30	45
function plus module call	8	40	7	3	12
operators count	30	18	10	33	58
module calls	3	4	3	0	5
prediction	_	?	_	_	+
actual	_		+	_	+

Prof. Jeff Tian Fall 2013

Application: CTA Cost & Performance

Cost factors:

- ▶ Tree usage: tree-complexity/node-count.

Performance Measures:

- Accuracy: Correct predictions;
- > Completeness: Correct predictions of actual high cost modules;
- ▷ Consistency: Correct high cost predictions.

Application: CTA Performance

Compare predicted and actual data:

Coverage =
$$\frac{P}{P+N}$$

Accuracy = $\frac{M_{11}+M_{22}}{P}$

Completeness = $\frac{M_{11}}{A_{+}}$

Consistency = $\frac{M_{11}}{P_{+}}$

		Actual		
		+	_	+/-
Predicted	+	M_{11}	M_{12}	P_{+}
	_	M_{21}	M_{22}	P_
	+/-	A_{+}	A_{-}	P
not identified				\overline{N}

Pilot: Problem & Screening

Environment: NASA/SEL;

Goal: Identify high cost modules using complexity measures.

Consequence: Eliminate non-complexity measures, reducing **S** from 74 to 40.

Screening of measures:

- \triangleright **BC**₁ and **BC**₂ true because $\mathcal{D}(\mathcal{V}) = \mathbf{U}$;
- ▶ BC₃ eliminates right half of Table 2;
- ▶ BC₅ true from observing data;
- ▶ BC₆ true because all aspects contribute to total effort;
- ▶ Result: Measure pool S reduced from 40 to 18.

Pilot: Measure Selection

Criteria: Conformance between ${\cal V}$ and totaleffort distribution. No need for S_1 .

Derivation: Mark a quartile "+" if $p_i(\mathcal{V}) \geq$ 0.75 and "-" if $n_i(\mathcal{V}) \geq 0.75$, where:

 $\triangleright m_i(\mathcal{V}) = \# \text{modules in quartile } i;$

 $\triangleright p_i(\mathcal{V}) = prob(m_4(effort)|m_i(\mathcal{V}));$

 $\triangleright n_i(\mathcal{V}) = 1 - p_i(\mathcal{V}).$

$$\max_{\mathcal{V},\mathcal{V} \in \mathbf{S}} \left\{ \begin{array}{l} \sum_{i=1, \\ p_i(\mathcal{V}) \geq 0.75 \\ \forall n_i(\mathcal{V}) \geq 0.75 \end{array} \right. \left. \left\{ m_i(\mathcal{V}) p_i(\mathcal{V}) + m_i(\mathcal{V}) n_i(\mathcal{V}) \right\} \right\}$$

Pilot: Prediction Result

ACTA:		Actual		
		+	_	total
Predicted	+	7	17	24
	_	4	143	147
	total	11	160	171

OCTA:		Actual		
		+	_	total
Predicted	+	7	32	39
	_	4	129	133
	total	11	161	172

performance measure	OCTA	ACTA
not identified	4	5
correctly identified	136	150
incorrectly identified	36	21
coverage	97%	97%
accuracy	79%	87%
completeness	63%	63%
consistency	17%	29%

Validation: Problems and Environment

Goal: Extrapolate pilot study result to validate our model.

Embedded Environment: NASA/SEL:

- ▶ 16 ground support projects ;
- ⊳ SLOC: 3K to 112K of Fortran code;
- Staffing: 4-23 (5-25M / 5-140 MM);
- ▶ Measures: 74 collected.

Direct Environment: CTA:

- ▷ Training set size: 1;
- > Testing on immediate next project;
- ▶ 10 data points from 16 raw data;
- ▷ 5 data points from isolated data.

Validation: Result Comparison

Overall Comparison:

		OCTA	ACTA
cost	measure pool	40	18
	tree size (all)	12.5	9.1
	tree size (-1)	7.3	4.4
perform-	coverage	97.6%	97.0%
ance	accuracy	69.7%	74.5%
	consistency	38.4%	50.4%
	completeness	35.6%	36.0%

Validation: Validation Result

- 1. Comparing with original CTA, measure selection using our model is effective:
 - cation tree complexity are reduced dramatically;
 - ▶ Performance: Coverage and completeness remain virtually the same; Accuracy and consistency are improved.
- 2. Comparing with random guessing, CTA based on either measure selection method made great improvement, well worth the cost.
- 3. The multiple data-points indicate the validity of our model.

Validation: Baselines

Baseline 1: Original CTA.

Baseline 2: Optimal Random Guessing:

coverage = 100%

accuracy = 62.5%

completeness = 25%

consistency = 25%

Comment: Other random guessing:

- \triangleright consistency $\equiv 25\%$;
- \triangleright max(accuracy) = 75% with 0 completeness;
- → max(completeness) = 100% with 25% accuracy.

Conclusion

- Our model provides a scientific model of program complexity to understand and improve software process;
- Our theory of program complexity embodies the empirical research and extends formal models in this area;
- Our technique of measure evaluation demonstrates the usability of our theory in solving software engineering problems;
- Our model appears valid and effective as demonstrated by the multiple applications.