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Module IV: Formal Models for Metrics
Evaluation

e Formal Models/Axioms for Metrics Evalu-
ation

e [ian-Zelkowitz Approach

e Application and Validation;
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Overview: Measurement

To achieve the goal of controlled software
development, we need to:

e Develop an engineering discipline;

e Measure and evaluate the working product;

e Construct a scientific model for program
measurement:

> Techniques from other disciplines;

> Develop new techniques if necessary;

> Basic questions:
— What to measure: goal & environ.
— How to measure it: metrics & tools
— Selection and validation
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Overview: Our Solution Strategy

Need a scientific model of program complexity:

1. Develop a theory of program complexity to
organize empirical knowledge;

2. Develop a technique for measure evalua-
tion and selection to extrapolate measure-
ment activities to new applications;

3. Validate the model using data from NASA
Software Engineering Laboratory.

Comments: The theory is a systematic exten-
sion to earlier studies by Prather, Fenton
and Whitty, and Weyuker.
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Previous Work: Prather

e Prather’'s axioms:

> m(S1;S2;...:5n) > >; m(S;)
> 2(m(S1) +m(S2))
> m(if P then Sq else S5)
> m(S1) + m(S52)
> 2m(S) > m(while P do S) > m(S)

e Observations/discussions:

> earliest attempt on axiomatic model
> some intuition captured:
— e.g., interactions
> limited scope
> justification for some axioms?
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Previous Work: Fenton

e Fenton’s hierarchical complexity:

> m(seq(F1,...,Fn))
= gn(m(F1),...,m(Fn))

> m(F(F1 on z1,...,F, on zp))
= hp(m(F), m(F1),...,m(Fp))

e Observations/discussions:

> general framework

— too general?
> contrast with Prather’s work
> relation to later work

— add specifics

— measurement theory based work
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Previous Work: Weyuker

e \Weyuker's Desirable Properties:

(BP,Q) (V(P) #V(Q) )

{P, V(P) =c } is finite

3P,Q) (P#Q)NNV(P)=V(Q) )
3P,Q) (PI=QDAWVP) #V(Q) )
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Previous Work: Weyuker

e About Weyuker's properties:

> more systematic treatment

> inspired/lead to many followup work
— positive: refinement
— negative: counter examples
— other: development & alternatives

e Tian/Zelkowitz as followup:

> merit of Weyuker's properties

> some universally satisfied
— basis for universal axioms

> some for certain types of metrics
— classification?

> a theory based on the above

> an evaluation/selection process
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Overview: Tian/Zelkowitz

e Tian/Zelkowith Theory/Framework

e AXxioms: Define program complexity and
state common properties.

e Dimensionality Analysis:
provide the basis for metrics classification

> Aspects or dimensions:
presentation, control, data;

> Levels: lexical, syntactic, semantic.

e Classification Scheme: Define mutually
exclusive and collectively exhaustive classes.
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Theory: Axiom Overview

Complexity: Relationship between program-pairs;

Comparability: Programs with identical func-
tionality are comparable (Al);
Composite programs are comparable to their
components (A2).

Monotonicity: Sufficiently large programs will
become more complex (A3).

Measurability: Measures on programs must agree
with underlying complexity (A4).

Diversity: Distribution of measured complex-
ity must not form a single cluster (A5).
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Theory: Defining Complexity

Definition: A complexity ranking ‘R is a binary
relation on programs. Given programs P
and @, we interpret R(P,Q) as P being no
more complex than @.

C(P,Q) iff R(P,Q)V R(Q,P).

Comments:

> It is internal to the programs;

> Related empirical to external properties;

> Very broad definition, need further qualifi-
cation and quantification.
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Theory: Comparability Axioms

Axiom Al: (VP,Q) (|PI=|Q|=C(P,Q) )
i.e., functionally equivalent programs are
comparable.

Axiom A2: (VP,Q) (IN(P,Q) = C(P,Q) )
il.e., a composite program is comparable
with its components.

Comments:

> Hard problem due to undecidability;
> R is self-reflexive;
> R is not transitive.
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Theory: Monotonicity Axiom

e Axiom A3: (IK € N)(VP,Q)
( (UN(P, Q)N (dist(P,Q) > K)) = R(P,Q) )
i.e., sufficiently large programs will not be
ranked lower in complexity.

e Comments:

> General trend must be followed:;
> Local deviations allowed.
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Theory: Measure Definition Axiom

Definition: A complexity measureV is a quan-
tification of complexity ranking R. V maps
programs into real numbers:

V:U=%R

Axiom A4: (VP,Q) (R(P,Q) = V(P) <V(Q))
I.e., @ measure must agree with the ranking
it is approximating.

Non-Axiom: Commonly assumed by other com-
plexity models:

VP, Q) (V(P) <V(Q) = R(F,Q))

> Incomparable cases;
> Non-transitive cases;
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Theory: Distribution Axiom

Requirement: Measure values must not clus-
ter around one single dominating point.

Axiom A5: (Vk e R®)(36 > 0)

(U AP :V(P) € [k—6,k+ 4]} =[U])

Axiom A5’: (Vk € ®)(36 > 0)

> prob(P) < 1
PY(P)ek—8,k+6]

Rationale: A single dominating cluster is dis-
allowed because it fails to achieve the goal
of providing comparison for programs.
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Theory: Complexity Dimensions

Presentation: Physical presentation for read-
ers that has no effect on functionality.

Control: Instructions, control structures, and
control dependencies.

Data: Data items, data structures, and data
dependencies.

Comments:

> Control + Data = Abstract;
> Orthogonal dimensions.
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Theory: Measurement Levels

Lexical: Token based measure computation;

Syntactic: Directly syntax based measure com-
putation;

Semantic: Semantic analysis needed for mea-
sure computation.

Comments:

> 27 possible points in a 3-D space;

> Space proximity ~ Measure similarity;

> Dividing control and data dimensions: 1.
count, 2. structure, 3. dependency.
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Theory: Vertical Classification

Classification based on computational models

used:

> Depend only on syntax trees of programs?
Yes, Abstract. No, non-abstract.

> Invariant to renaming?
Yes, Functional. No, non-functional.

4 .
Functional

Abstract
All < Non Functional

\ Non Abstract
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Theory: Vertical Classification Example

( Functional

Abstract { stmi, ss, fp, cyc, }

scan, stmt, ss, fp, < knot, du, hac, ac
cyc, knot, du, hac, ac

All < Non Functional

| {scan}

Non Abstract
| {lc}
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Theory: Hierarchical Classification

Classification based on complexity relations of
component-composite programs:

> Sensitive to context?
Yes, interactional. No, context free.
> Depend only on building element but not
organization?
Yes, Primitive. No, non-primitive.
> Capture both interface and internal?
Yes, Overall. No, non-overall.

Primitive
Context Free

Non Primitive
All <

Overall
Interactional

Non Overall
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Theory: Hier. Classification Example

[ Primitive
Context Free { scam, stmt, }

scan, stmt, X 88, eyc, knot
ss, cyc, knot

All < .

Non Primitive

)
Overall

Interactional {du, hac, ar}

1fp, du, hac, ar} Non Overall

- {fp}
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Evaluation: Problems and Solutions

Problem: Evaluation of complexity measures;

Assumption: Measures satisfy Axiom A4,

View: Measures as points in a measure space;

Solution Strategy:

> Define feasible region by using axioms
and classification as boundary conditions;
> Derive scales for measures within the

feasible region;
> Aggregate evaluations and select the op-

timal measure.
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Evaluation: Boundary Conditions

AXioms as testable predicates:

BC;. Axiom Al: (D(V)— domain of V)

(VP,Q)(|PI=1QIANPeDV))=QecD(V)

BC>. Axiom A2:

(VP,Q)( (IN(P, Q) VIN(Q, P)) NP € D(V) )

BC3. Modified Axiom A3:

(AK)(VP,Q) (dist(P,Q) > K ) = V(P) < V(Q)

BC,. Assumed true.

BCs. Modified Axiom Ab:

(Vk e ®)(36 > 0) prob(V(P) € [k—6,k+95]) < 1
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Evaluation: Screening Using AXioms

Example Measure: V(P) = 1 — ﬁ, where
s(P) is the statement count of P.

Screening:

> BC; is satisfied because D(V) = U;
> BC»> same as above;
> BC3 is satisfied because:

(VP,Q) (0<s(P)<s(Q)) =

1 1
(1-wm < =)
> BCg is not satisfied because:

prob(V(P)e[1—-6,146]) = 1

Result: Reject V due to violation of BCg.
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Evaluation: Screening Using Classes

BCg: Appropriate class depends on goals.

Goal 1. Documentation vs. comprehension.
Target: Non-abstract class.
Reject: Abstract class.

Goal 2. Object code size assessment.
Target: Abstract class.

> Total line count might be acceptable;
> Blank line count is rejected.

Goal 3. Programming effort prediction.
Target: Both abstract & non-abstract classes.
Reason: Both contribute to effort.
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Evaluation: Monotonicity Scale

Assumption: Prefer measures that better ap-
proximates monotonicity;

Need to capture the extent and frequency of
non-monotonic deviations;

Scale S1: The monotonicity scale is (T, pm),
where T is the period of monotonicity:

T = m[gn( dist(P,Q) > K = V(P) <V(Q))

and py, is the conditional probability of non-
monotonic component-composite pairs:

pm = prob(V(P) > V(Q) | IN(P,Q))
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Evaluation: Distribution Scale

Assumption: Uniform distribution desirable.

Need to capture:

> Significant points on the scale;
> Uniformity of these points.

Uniformity Scale S3: For measure V, ¢ > 0,
6 > 0, and pp, = prob(ké < V(P) < (k+1)9),
S3 = (n, d), wheren and d are the cardinal-
ity and the normalized s.d. of {py | pr > €}.

(

0 if n=20

d = «

. 2
\/Zk(ln”pk) otherwise
\
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Evaluation: Scale & Dominance Relation

Global Scaling Vector ¢ is defined on rele-
vant scales {S;} with G(V)[i] defined suc-
cessively as:

_— S, (V)[k] if opt = max
GVl = { —S;-(V)[k] if opt = min

until all individual scaling dimensions S (V) [k]
are exhausted.

Dominance Relation: A measure V; is said to
dominate another measure V; if

(G(Vy) > G(V) )INEE)(GWV) Ikl > G(V;)Ik] )

Elimination: All dominated measures are elim-
inated.
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Evaluation: Objective Function

Assess the importance and trade-off among Sj
to form weight vector W.

(Vi, j, k) W(Vy) k] = W(V;)lk] = WIk]
Example: the weight for S1 could be d X pe.

T he selection problem reduces to the constrained
optimization problem:

max (fz- = ZQ(VZ')[J'] * W[JD)
j

such that:
V; satisfies all boundary conditions.
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Application and Model Validation

1. Application domain: risk identification for
projects in NASA/SEL;

2. Pilot experiment: apply the scientific model
to select complexity measures;

3. Data collection: run multiple applications
and collect results;

4. Analyze resulting data-points to validate
the scientific model.
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Application: Risk Identification

Risk in software decisions:

> Multiple alternatives;

> Uncertainty about future development;
> Large investment;

> Significant consequences.

Risk Identification via CTA (Selby&Porter):

> Risk: likelihood of high cost or effort;
> High cost: highest quartile (80:20 rule);
> Basis: historical data;

> Methodology: classification trees.
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Application: CTA Prediction Example

Predictions are made based on:

> Classification tree;
> Sample module measurement data:

Modules
m1q mo ms3 my meg
cyclomatic 3 38 13 30 45
complexity
function plus 8 40 7 3 12
module call

operators | 30 18 10 33 58

count
module 3 4 3 O 5

calls
prediction — e — — -+
actual — — -+ — +
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Application: CTA Cost & Performance

Cost factors:

> Tree generation: measure pool size S;
> Tree usage: tree-complexity/node-count.

Performance Measures:

> Coverage: Predictions made;

> Accuracy: Correct predictions;

> Completeness: Correct predictions of
actual high cost modules;

> Consistency: Correct high cost predictions.
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Application: CTA Performance

Compare predicted and actual data:

Coverage = o f -
Accuracy = M1 }") Moo
Completeness = ]\X—}I—l
Consistency = _]\gil
Actual
+ — +/-
Predicted | + | M1 M1» Py
— | M21 Moo P_
+/— Ay A_ P
not identified N
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Pilot: Problem & Screening

Environment: NASA/SEL;

Goal: Identify high cost modules using com-
plexity measures.
Consequence: Eliminate non-complexity
measures, reducing S from 74 to 40 .

Screening of measures:

> BC; and BC, true because D(V)= U;

> BC3 eliminates right half of Table 2;

> BCg true from observing data;

> BCg true because all aspects contribute
to total effort;

> Result: Measure pool S reduced from
40 to 18.

Prof. Jeff Tian Fall 2013



Software Metrics and Quality Engineering CSE 8314 (IV)35

Pilot: Measure Selection

Criteria: Conformance between VYV and total-
effort distribution. No need for S7.

Derivation: Mark a quartile “4" if p;(V) >
0.75 and “-" if n;(V) > 0.75, where:

> m;(V) = #modules in quartile ¢;
> p;(V) = prob(mg(effort)|m;(V) ),
> n;(V) = 1—p;(V).

(

4
Vrnjags 4 7; §1 {m;WV)p; (V) + m;(V)n;(V)}
p:(V) > 0.75

\ vn;(V) > 0.75
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Pilot: Prediction Result

ACTA: Actual
-+ — total
Predicted + 7 17 24
— 4 143 147

total | 11 160 171

OCTA: Actual
-+ — total
Predicted + 7 32 39
— 4 129 133

total | 11 161 172

performance measure | OCTA ACTA
not identified 4 5
correctly identified 136 150
incorrectly identified 36 21
coverage 97% 97%
accuracy 79% 87%
completeness 63% 63%
consistency 17% 29%
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Validation: Problems and Environment

Goal: Extrapolate pilot study result to validate
our model.

Embedded Environment: NASA/SEL:

> 16 ground support projects ;

> SLOC: 3K to 112K of Fortran code;
> Staffing: 4-23 (5-25M / 5-140 MM);
> Modules: 83-531/proj, 4700+ total;
> Measures. 74 collected.

Direct Environment: CTA:

> Training set size: 1;

> Testing on immediate next project;
> 10 data points from 16 raw data;
> 5 data points from isolated data.
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Validation: Result Comparison

Overall Comparison:

OCTA ACTA
cost measure pool 40 18
tree size (all) 12.5 9.1
tree size (-1) 7.3 4.4
perform- | coverage 97.6% 97.0%
ance accuracy 69.7% 74.5%
consistency 38.4% 50.4%
completeness | 35.6% 36.0%
Prof. Jeff Tian Fall 2013
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Validation: Validation Result

1. Comparing with original CTA, measure se-
lection using our model is effective:

> Cost: Measure pool size and classifi-
cation tree complexity are reduced dra-
matically;

> Performance: Coverage and complete-
ness remain virtually the same; Accu-
racy and consistency are improved.

2. Comparing with random guessing, CTA based
on either measure selection method made
great improvement, well worth the cost.

3. The multiple data-points indicate the va-
lidity of our model.
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Validation: Baselines

Baseline 1: Original CTA.

Baseline 2: Optimal Random Guessing:

coverage
accuracy
completeness
consistency

100%
62.5%
25%
25%

Comment: Other random guessing:

> consistency = 25%;

> max(accuracy) = 75%
with O completeness;

> max(completeness) = 100%
with 25% accuracy.

Prof. Jeff Tian

Fall 2013



Software Metrics and Quality Engineering CSE 8314 (1v)41

Conclusion

e Our model provides a scientific model of
program complexity to understand and im-
prove software process;

e Our theory of program complexity embod-
ies the empirical research and extends for-
mal models in this area;

e Our technique of measure evaluation demon-
strates the usability of our theory in solving
software engineering problems;

e Our model appears valid and effective as
demonstrated by the multiple applications.
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