Software Metris and Quality Engineering

CSE 8314 — Fall 2013

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8314.13f

Module V: Recent Development and **Advanced Topics**

- New Metrics and Applications
- New Models and ESE Guidelines
- Data Collection/Extraction/Mining
- Hypothesis Testing

New Metrics and Applications

- New metrics might be needed:

 - new application domain
 - ▷ new vs. adapted/adopted metrics
- New language/technology
 - CK metriics for OO
- New application domains (+technologies):
 - e.g., Web, net-centric, SOA, Cloud, etc.
- NCSS complexity metrics (SDPS slides)

New Models and ESE

- Empirical Research in S/w Eng. (ESE):
 2002 paper by Kitchenham, Pfleeger, Pickard,
 Jones, Hoaglin, Emam, Rosenberg
 (TSE 28(8):721-734).
- Why a guideline?
 - More ESE research activities
 - Maturing of SE and ESE
 - Practical concerns:
 - reader/students
 - researchers/meta-analyst
 - reviewers/editors
 - journals/conferences etc
- More details in CSE 8340

ESE Guideline: Basis

- Internal basis for the guideline:

 - Researcher experience in ESE
 - > from both author/reviewer perspectives
- External basis for the guideline:
 - Scientific method
 - Implicit guidelines used for emp. studies in other mature disciplines (most natural science)
 - ▷ (Explicit) guidelines for emp. studies in other disciplines (e.g., medical)
 - External experts as co-authors
- Result: Preliminary guidelines.

ESE Guideline: Sources

- Authors as information sources:
 - Diverse background
 - ▷ Experience in SE/ESE/statistics/others
- Other important sources:
 - Similar guidelines for medical journals
 - Meta-analysis studies (studies of empirical studies and results)
 - Papers about statistical applications:
 - positive (guide, "what should be done")
 - negative ("what was wrong/to avoid")
 - ▷ Other "soft" sciences
 - ▶ List of specific references in paper

ESE Guideline: Topic Areas

- 1. Experimental context
- 2. Experimental design
- 3. Conduct experiment and data collection
- 4. Analysis
- 5. Presentation of result
- 6. Interpretation of result

Data Collection/Extraction/Mining

Data collection

- Data source identification
- Data collection procedures
- ▷ IBM data: complexity/defect/activity/etc.

Data extraction:

- > Tapping into pre-existing data sources
- Web measurement example (paper in Blackboard)

• Data mining:

- mining/extensive processing necessary
- AutoODC work at SMU (paper in Blackboard)

Validation and Hypothesis Testing

- Hypothesis: An assumption or concession made for the sake of argument.
 - \triangleright Simple hypothesis: One value of the population parameter ($\mu = 115$).
 - \triangleright Composite hypothesis: A range of values that the population parameter may assume ($\mu \neq 115$).
 - \triangleright Null Hypothesis (H_0) : Status quo.
 - \triangleright Alternative Hypothesis (H_a) : Believed to be true.
 - \triangleright Both H_0 and H_a can be simple or composite.
- Hypothesis Testing: Choose between two competing hypotheses about the value of a population parameter using the knowledge obtained from a sample.
 - Example HT: slides online (pp.45-48)