Software Metris and Quality Engineering CSE 8314 — Fall 2017

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8314.17f

Module I: Metrics/QE Overview

- About CSE 8314
- Software Measurement
- ESE, GQM, etc.
- Comparison, Evaluation and M. Theory

- Two parts of the CSE 8314 title
 - Software metrics (or just metrics)
 measurement objects and types
 - Software quality engineering (SQE)
 activities/models/etc. in Tian/SQE
 book
- Metrics as basis to support SQE and beyond (management, process, etc.)
- 5 Core Metrics by Putnam&Myers
 - ▷ size (complexity etc.)
 - ⊳ time
 - ⊳ effort
 - ▷ reliability (quality etc.)
 - ▷ productivity

Goal of Software Measurement

To achieve the goal of controlled software development, we need to:

- Develop an *engineering* discipline;
- Measure and evaluate the working product;
- Construct a *scientific* model for program measurement:
 - \triangleright Techniques from other disciplines;
 - \triangleright Develop new techniques if necessary:
 - ▷ Basic questions:
 - What to measure: goal & environ.
 - How to measure it: metrics & tools
 - Selection and validation
- See also measurements and models from Tian/SQE Chapter 19.

How Does CSE 8314 Fit In?

- (Area I) M/QE fundamentals:
 - Generic concepts, important ideas ▷ Overall framework.
- (Areas II&III) basic metrics:
 - External metrics
 - ▷ Internal metrics
 - ▷ Relations, classification, usage
- (Area IV) Metrics evaluation:
 - \triangleright Empirical \Rightarrow formal model.
 - \triangleright Formal models for metrics evaluation.
- (Area V) New frontier:
 - Hypothesis testing using metrics
 - ▷ Bigger picture (ESE) + new applications/frontier

- (Area I) M/QE fundamentals:
 - ▷ Generic concepts, important ideas
 - ▷ Overall framework.
- General concepts
 - ▷ Measurement, ESE, and SE
 - Measurement of software vs. measurement of other objects
 - Measurement "maturity" and spectrum
- Overall framework.
 - ▷ GQM/QIP/EF
 - ▷ Other frameworks
- Mathematical foundation
 - ▷ Measurement theory
 - ▷ Types and levels of measurement

- (Areas II&III) basic metrics:
 - External metrics
 - ▷ Internal metrics
 - \triangleright Relations, classification, usage
- External metrics
 - ▷ Quality: reliability, safety, dependability, usability, etc.
 - ▷ Cost related
 - ▷ Time/schedule/activity/environment/etc.
 - ▷ Areas and contexts: PPP
- Internal metrics
 - ▷ Complexity
 - Dimensions and classification of complexity metrics

- (Area IV) Metrics evaluation:
 - \triangleright Empirical \Rightarrow formal model.
 - ▷ Formal models for metrics evaluation.
- Empirical evaluation
 - Data and statistical analysis
 - ▷ Other empirical evidence/corroboration
- Formal models for metrics evaluation.
 - Historical development
 - ▷ Tian-Zelkowitz model
 - Other recent development

- (Area V) New frontier:
 - > Hypothesis testing using metrics
 - Bigger picture (ESE) + new applications/frontier
- Hypothesis testing using metrics: Koru-Tian and other works
- ESE, the bigger picture
 - ▷ ESE ideas, guidelines, applications
 - Integrated approach (Putnam/Myers:5CM)
- New applications/frontier/development
 - ▷ Traditional: commercial, telecom, etc.
 - ▷ New: net-centric, SOA, cloud, etc.

Complexity and Other Measurement

Basic assumption: The lower the complexity, the more desirable:

- \triangleright cheaper to build;
- \triangleright easier to maintain;
- \triangleright more reliable;

 \triangleright ...

Usage of Complexity Measurement:

activity	time	nature
assessment	a posteriori	passive
prediction	a priori	passive
control	persistent	active

Other Measurement : Internal and external ones (next).

Internal/External Measures

Internal Measures: depend on programs only. complexity measures \subset internal measures;

External Measures: depend also on other external factors — so called *-lities*.

- Relations: correlated but not uniquely determined. To use internal measures to predict external measure, we need:
 - ▷ Discover *appropriate* internal measures;
 - ▷ Establish predictive relations;
 - ▷ Use and validate predictions.

Measures and Dimensions

Complexity measures are multi-dimensional because of:

- 1. Multi-facet internal organization:
 - \triangleright Presentation;
 - ▷ Control;
 - ⊳ Data.
- 2. Multi-purpose external usage under different activities.
 - ▷ Assessment: Basili's GQM;
 - ▷ Prediction: Boehm's COCOMO;
 - ▷ Control: Boehm's spiral.

Software Measurement

- In the measurement spectrum: "maturing"
- Example: testing evaluation
 - ▷ Test results and expenditure.
 - ▷ Test cases and measurement.
 - ▷ Internal measurements: size/complexity/etc.
 - Environmental data: process/people/setup
 - ▷ Evaluation results: reliability.
- Data/analysis from other phases:
 - ▷ Product: code, documents etc.
 - external: quality, cost, schedule etc.
 - Process: entities/relations/environment
 - ▷ People: experience etc.
 - ▷ Various assessment/prediction/improvement.

Software Product Measurement

- Product specific (static):
 - ▷ Code, test case, document
 - \triangleright Structure vs. information flow
 - ▷ Control/data/presentation
 - Metrics and data collection
 - ▷ ESE: product quality/etc. questions?
- Execution specific (dynamic):
 - ▷ Path verification (white-box)
 - Usage to component mapping (black-box)
 - Measurement along the path
 - Usage of the measurement data
 - ▷ ESE: performance/reliability/etc.?

Other Software Measurement

- Process characteristics
 - ▷ Entities, relationships, and integration
 - ▷ Preparation, execution and followup
- People characteristics
 - ▷ Skills and experience
 - Roles: planners/developers/testers
 - Process management and teams
- Environmental characteristics
 - Hardware/software environment
 - Product/market environment

Measurement and ESE

- Empirical Software Engineering (ESE): Applying empirical techniques/methods to solve software engineering problems.
- Objects of study:
 - ▷ Observation of SE activities.
 - ▷ Case studies in SE.
 - ▷ Controlled experiments.
- Analysis and conclusions:
 - ▷ Data from the above activities.
 - ▷ Statistical and other analyses.
 - ▷ Conclusions draw based on data/analyses.
- Measurement plays a central role in ESE.

Software Engineering Perspective

- Key components of S/W Eng.
 - Methods and processes
 - ▷ Formal foundations (math/theory)
 - \triangleright Experimentation (scientific)
- Methods and process
 - Methods and methodologies
 - structured programming, OO, SOA
 - specialized methods specification: formal vs informal testing: black-box/white-box/random
 - Process models (and measurement)
 - Mixing method and process
 - agile, XP, TDD, etc.
 - clean room example
 - ▷ 7313, 7314 and other MS/CS courses.

Software Engineering Perspective

- Formal foundations
 - Mathematics/logic/statistics
 - formal specifications
 - program verification
 - statistical models
 - Computer science
 - language and ADT \Rightarrow OO
 - systems/tools/CASE
 - ▷ Formal models on metrics: Area IV.
- Experimentation (scientific)
 - ▷ Trace/case studies
 - Controlled experiment
 - Measurement and analysis
 - Empirical validation
 - ▷ Observation-based vs. goal-oriented

Software Processes

- Mega-Process: Initiation, Development, Maintenance, Termination.
- Components: Requirement, Specification, Design, Coding, Testing, Release.
- Process Variations:
 - ▷ Waterfall: sequence and dependencies;
 - ▷ Iterative: incremental, divide&conquer;
 - Spiral: risk management;
 - ▷ Mixed/synthesized.
- Measurement and analysis throughout different components of the products and processes.
- Relation to CSE 7313, 7314, etc.

ESE in **SE** Activities

- Observational studies:
 - Passive observations of industrial practice, etc.
 - Try to draw preliminary conclusions based on observations and related data.
 - \triangleright Multiple observations \Rightarrow validation.
- Case studies:
 - ▷ Semi-active.
 - ▷ Pre-set study goals.
 - \triangleright Conclusions need further validation.
- Controlled experiments:
 - \triangleright Active design and experimentation.
 - ▷ Closest to scientific experiments.
 - ▷ Solid conclusions.

Measurement Framework: GQM

- Background:
 - Software Engineering Laboratory
 - ▷ TAME projects
 - ▷ Key personal: Basili et al.
- Software Engineering Laboratory
 - ▷ NASA/GSFC
 - University of Maryland
 - ▷ Computer Sciences Corp.
 - ▷ 1st SEI process award recipient
 - ▷ Software measurement and ESE:
 - among the first ESE studies
 - software measurement and analysis
 - goal-question-metric (GQM) paradigm
 - experience factory (EF)

GQM

- GQM: what is it?
 - ▷ Goal: goal of the (measurement) study.
 - ▷ Questions: questions related to goals.
 - ▷ Metrics: metrics answering questions.
- GQM background/foundations:
 - ▷ Goal oriented approach.
 - ▷ Measurement based.
 - ▷ Scientific experimentation.
 - ▷ Hierarchy or paradigm: diagram.
- Relation to ESE:
 - ▷ Can serve as general guidelines for ESE.
 - Related EF: similar to scientific labs in ESE.

GQM and EF

- EF: What is it?
 - Experience Factory
 - ▷ Separation of concerns
 - ▷ In connection with GQM/TAME
 - In ESE: Similar to scientific labs that conducts scientific experiments.
- Experience Factory
 - ▷ Input from product organization
 - Output to product development
 - ▷ Internal organization
 - ▷ Implementation in NASA/SEL

GQM/EF Recent Development

- Research activities:
 - ▷ New NSF-funded Center:
 - Univ. Maryland and USC (Boehm)
 - GMQM and other activities
 - Fraunhofer Institute and Centers
 - ▷ Others
- GQM extensions:
 - GMQM: success model
 - Specialized guidelines
 - Kitchenham et al.
 - Tian measurement/model, etc.
 - More emphasis on scientific experimentation
- EF beyond NASA/SEL.

GQM/EF Work at SMU

- NSF Net-Centric and Cloud Software and Systems I/UCRC
 - ▷ SMU/UNT/UTD founding members
 - ▷ EF for industrial partners of I/UCRC
 - Quality/dependability/performance
 - ▷ Application domain:
 - net-centric, service-oriented, and
 - more recently cloud computing
- MRI and other projects
 - Instruments for dependability evaluation for CCS (cloud computing systems)
 - ▷ Again, a kind of EF
- J. Tian, An Emerging Experience Factory to Support High-quality Applications Based on Software Components and Services. Journal of Software, Vol.6, No.2, pp.289-297, Feb., 2011.

Measurement: Comparison

- Physics(and other physical sciences)
 - ▷ Motion: static and dynamic aspects
 - distance metrics
 - time metrics
 - energy, force, etc.
 - other metrics: speed, acceleration etc.
 - ▷ Similar for other areas in physics:
 - heat, sound, electricity, atomic/nuclear
- Some common characteristics
 - ▷ Well-defined, quantitative metrics:
 - usually interval or ratio type (later)
 - "unit": important standard of references
 - Importance role of measurement and data in "scientific" experiment: observation, hypothesis testing.
 - > Theory and models: both basis and guide

Measurement: Comparison

- Other "hard" sciences:
 - Chemistry: mostly quantities
 (other focus: reactions, pathways, etc.)
 - ▷ Biological/life sciences:
 - similar role of measurement
 - ▷ Geo-/astro-/etc.
 - important role of measurement
- Engineering:
 - ▷ Mechanical/civil/chemical/electrical/etc.
 - ▷ Emerging: measurement also maturing.
 - Measurement: Similar to foundational scientific disciplines
- Software measurement: "maturing" towards these

Measurement: Comparison

- Psychology:
 - Example: IQ test and IQ score
 - ▷ Less well-defined
 - subjective vs objective
 - data validity and interpretation
 - usually unit-less
 - Other quantitative measurements and statistics
 - Non-quantitative: classification/type
- Other "soft" sciences and disciplines:
 - ▷ Social sciences, humanities, arts
 - ▷ Type of measurement as a distinguishing factor
- Software measurement: more "mature" than these?

Measurement in ESE

- Measurement: central activity in ESE
 - > context of measurement/expr/study
 - measurements associated with different experimental designs
 - > measurement and data collection
 - > measurement result analysis
 - measurement/analysis result presentation, interpretation, and drawing conclusions
- Interpreted as measurement activities:
 - ▷ definition: context, design
 - ▷ gathering: data collection
 - > analysis/followup:
 - analysis, presentation, interpretation

Measurement: Evaluation

- Measurement typically used to evaluation SE artifacts/activities.
- Also need to evaluate measurements/metrics themselves:
 - ▷ properly defined?
 - ▷ properly used?
 - ▷ lead to useful results?
- Use of evaluation results:
 - ▷ selecting existing measures/metrics
 - ▷ proposing new ones
 - \triangleright under what context?

Measurement: Evaluation

- Types of metrics evaluation:
 - \triangleright self evaluation
 - ▷ empirical evaluation
 - b formal model based evaluation
- Self evaluation of new metrics:
 - ▷ when proposed/defined
 - \triangleright demonstrate the use & usefulness
 - possible subjective bias
 - ▷ limited scope & validity

Measurement: Evaluation

- Empirical evaluation of metrics:
 - \triangleright a set of given metrics
 - empirical study set up
 - \triangleright focus: how these metrics work
 - ▷ other performance measures not subjected to evaluation
 - ▷ typical evaluation objects: internal (complexity) metrics
- Evaluation based on formal models:
 - based on empirical studies/evidences
 - generalized theory/models
 - development: after many empirical evaluation studies
- More later (Area IV of CSE 8314).

Measurement Theory

- Best book on the subject: Fred S. Roberts, "Measurement Theory, with applications to decision making, utility, and the social sciences", Addison-Wesley, 1979.
- Formalization of measurement:
 - R: relation reflexive, symmetric, transitive, complete?
 - b f(x): measurement as functional mapping
 - \triangleright aRb \leftrightarrow f(a) i f(b)
- Basic questions
 - ▷ representation: defines mapping/scale
 - meaningfulness: truth unchanged by admissible transformations

Measurement Theory

- Scale types defined by admissible transformations
- Some common scale types (from strongest to weakest):
 - \triangleright absolute: $\phi(x) = x$, e.g., counting
 - \triangleright ratio: $\phi(x) = \alpha x, \ \alpha > 0, \ e.g., \ mass,$ temperature (K), time interval
 - \triangleright interval: $\phi(x) = \alpha x + \beta$, $\alpha > 0$, e.g., temperature (C, F), time (calendar), IQ standardized score
 - \triangleright ordinal: $x \geq y$ iff $\phi(x) \geq \phi(y)$, e.g., preference, hardness, air quality, IQ raw score
 - \triangleright nominal: any one-to-one, label alt plans, CSE/EMIS/EE/etc course code