
Software Metrics and Quality Engineering CSE 8314 (IV) 1

Software Metris and Quality

Engineering

CSE 8314 — Fall 2017

Prof. Jeff Tian, tian@lyle.smu.edu
CSE, SMU, Dallas, TX 75275

(214) 768-2861; Fax: (214) 768-3085
www.lyle.smu.edu/∼tian/class/8314.17f

Module IV: Formal Models for Metrics

Evaluation

• Formal Models/Axioms for Metrics Evalu-

ation

• Prather, Weyuker, et al.

• Tian-Zelkowitz Approach

• Application and Validation;
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Overview: Measurement

To achieve the goal of controlled software

development, we need to:

• Develop an engineering discipline;

• Measure and evaluate the working product;

• Construct a scientific model for program

measurement:

⊲ Techniques from other disciplines;

⊲ Develop new techniques if necessary;

⊲ Basic questions:

– What to measure: goal & environ.

– How to measure it: metrics & tools

– Selection and validation
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Overview: Our Solution Strategy

Need a scientific model of program complexity:

1. Develop a theory of program complexity to

organize empirical knowledge;

2. Develop a technique for measure evalua-

tion and selection to extrapolate measure-

ment activities to new applications;

3. Validate the model using data from NASA

Software Engineering Laboratory.

Comments: The theory is a systematic exten-

sion to earlier studies by Prather, Fenton

and Whitty, and Weyuker.
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Previous Work: Prather

• Prather’s axioms:

⊲ m(S1;S2; . . . ;Sn) ≥
∑

i m(Si)

⊲ 2(m(S1) + m(S2))

≥ m(if P then S1 else S2)

> m(S1) + m(S2)

⊲ 2m(S) ≥ m(while P do S) > m(S)

• Observations/discussions:

⊲ earliest attempt on axiomatic model

⊲ some intuition captured:

– e.g., interactions

⊲ limited scope

⊲ justification for some axioms?
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Previous Work: Fenton

• Fenton’s hierarchical complexity:

⊲ m(seq(F1, . . . , Fn))

= gn(m(F1), . . . , m(Fn))

⊲ m(F(F1 on x1, . . . , Fn on xn))

= hF (m(F), m(F1), . . . , m(Fn))

• Observations/discussions:

⊲ general framework

– too general?

⊲ contrast with Prather’s work

⊲ relation to later work

– add specifics

– measurement theory based work
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Previous Work: Weyuker

• Weyuker’s Desirable Properties:

1. (∃P, Q) (V(P) 6= V(Q) )
2. {P, V(P) = c } is finite
3. (∃P, Q) (P 6= Q) ∧ (V(P) = V(Q) )

4. (∃P, Q) ( P = Q ) ∧ (V(P) 6= V(Q) )

5. (∀P, Q)
(V(P) ≤ V(P ;Q) ∧ V(Q) ≤ V(P ;Q) )

6. (∃P, Q, R)
(V(P) = V(Q) ∧ V(P ;R) 6= V(Q;R) )

7. (∃P, Q) (P = perm(Q) ∧ V(P) 6= V(Q) )
8. (∀P) (∀x, y) V(P) = V(Px

y )

9. (∃P, Q) (V(P) + V(Q) < V(P ;Q) )
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Previous Work: Weyuker

• About Weyuker’s properties:

⊲ more systematic treatment

⊲ inspired/lead to many followup work

– positive: refinement

– negative: counter examples

– other: development & alternatives

• Important followup works:

⊲ measurement theory based, Zuse

⊲ Cherniavsky and Smith

⊲ Tian and Zelkowitz

⊲ Briand and Basili

⊲ others...
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Previous Work: Weyuker

• Tian/Zelkowitz as followup:

⊲ merit of Weyuker’s properties

⊲ some universally satisfied

– basis for universal axioms

⊲ some for certain types of metrics

– classification?

⊲ a theory based on the above

⊲ an evaluation/selection process

• Followup to Weyuker and Tian/Zelkowitz

⊲ Briand/Basili property-based metrics

⊲ GQM and property/axiom/etc.

⊲ Metrics validation work (Schneidewind)

⊲ Other theoretical work
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Overview: Tian/Zelkowitz

• Tian/Zelkowith Theory/Framework

• Axioms: Define program complexity and

state common properties.

• Dimensionality Analysis:

provide the basis for metrics classification

⊲ Aspects or dimensions:

presentation, control, data;

⊲ Levels: lexical, syntactic, semantic.

• Classification Scheme: Define mutually

exclusive and collectively exhaustive classes.
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Theory: Axiom Overview

Complexity: Relationship between program-pairs;

Comparability: Programs with identical func-

tionality are comparable (A1);

Composite programs are comparable to their

components (A2).

Monotonicity: Sufficiently large programs will

become more complex (A3).

Measurability: Measures on programs must agree

with underlying complexity (A4).

Diversity: Distribution of measured complex-

ity must not form a single cluster (A5).
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Theory: Defining Complexity

Definition: A complexity ranking R is a binary

relation on programs. Given programs P

and Q, we interpret R(P, Q) as P being no

more complex than Q.

C(P, Q) iff R(P, Q) ∨R(Q, P).

Comments:

⊲ It is internal to the programs;

⊲ Related empirical to external properties;

⊲ Very broad definition, need further qualifi-

cation and quantification.
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Theory: Comparability Axioms

Axiom A1: (∀P, Q) ( P = Q ⇒ C(P, Q) )

i.e., functionally equivalent programs are

comparable.

Axiom A2: (∀P, Q) (IN(P, Q) ⇒ C(P, Q) )

i.e., a composite program is comparable

with its components.

Comments:

⊲ Hard problem due to undecidability;

⊲ R is self-reflexive;

⊲ R is not transitive.
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Theory: Monotonicity Axiom

• Axiom A3: (∃K ∈ N )(∀P, Q)

( (IN(P, Q)∧(dist(P, Q) > K)) ⇒ R(P, Q) )

i.e., sufficiently large programs will not be

ranked lower in complexity.

• Comments:

⊲ General trend must be followed;

⊲ Local deviations allowed.
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Theory: Measure Definition Axiom

Definition: A complexity measure V is a quan-

tification of complexity ranking R. V maps

programs into real numbers:

V : U ⇒ ℜ

Axiom A4: (∀P, Q) (R(P, Q) ⇒ V(P) ≤ V(Q) )

i.e., a measure must agree with the ranking

it is approximating.

Non-Axiom: Commonly assumed by other com-

plexity models:

(∀P, Q) (V(P) ≤ V(Q) ⇒ R(P, Q))

⊲ Incomparable cases;

⊲ Non-transitive cases;

Prof. Jeff Tian Fall 2017



Software Metrics and Quality Engineering CSE 8314 (IV)15

Theory: Distribution Axiom

Requirement: Measure values must not clus-

ter around one single dominating point.

Axiom A5: (∀k ∈ ℜ)(∃δ > 0)

(|U − {P : V(P) ∈ [k − δ, k + δ]}| = |U|)

Axiom A5’: (∀k ∈ ℜ)(∃δ > 0)

∑

P,V(P)∈[k−δ,k+δ]

prob(P) < 1

Rationale: A single dominating cluster is dis-

allowed because it fails to achieve the goal

of providing comparison for programs.
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Theory: Complexity Dimensions

Presentation: Physical presentation for read-

ers that has no effect on functionality.

Control: Instructions, control structures, and

control dependencies.

Data: Data items, data structures, and data

dependencies.

Comments:

⊲ Control + Data = Abstract;

⊲ Orthogonal dimensions.
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Theory: Measurement Levels

Lexical: Token based measure computation;

Syntactic: Directly syntax based measure com-

putation;

Semantic: Semantic analysis needed for mea-

sure computation.

Comments:

⊲ 27 possible points in a 3-D space;

⊲ Space proximity ≈ Measure similarity;

⊲ Dividing control and data dimensions: 1.

count, 2. structure, 3. dependency.
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Theory: Vertical Classification

Classification based on computational models

used:

⊲ Depend only on syntax trees of programs?

Yes, Abstract. No, non-abstract.

⊲ Invariant to renaming?

Yes, Functional. No, non-functional.

All































Abstract











Functional

Non Functional

Non Abstract

Prof. Jeff Tian Fall 2017



Software Metrics and Quality Engineering CSE 8314 (IV)19

Theory: Vertical Classification Example

All



































































Abstract
{

scan, stmt, ss, fp,
cyc, knot, du, hac, ac

}







































Functional
{

stmt, ss, fp, cyc,
knot, du, hac, ac

}

Non Functional
{scan}

Non Abstract
{lc}
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Theory: Hierarchical Classification

Classification based on complexity relations of

component-composite programs:

⊲ Sensitive to context?

Yes, interactional. No, context free.

⊲ Depend only on building element but not

organization?

Yes, Primitive. No, non-primitive.

⊲ Capture both interface and internal?

Yes, Overall. No, non-overall.

All
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Non Primitive

Interactional











Overall

Non Overall
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Theory: Hier. Classification Example

All



































































































Context Free
{

scan, stmt,
ss, cyc, knot

}







































Primitive
{

scan, stmt,
ss, cyc, knot

}

Non Primitive
{}

Interactional
{fp, du, hac, ar}































Overall
{du, hac, ar}

Non Overall
{fp}
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Evaluation: Problems and Solutions

Problem: Evaluation of complexity measures;

Assumption: Measures satisfy Axiom A4;

View: Measures as points in a measure space;

Solution Strategy:

⊲ Define feasible region by using axioms

and classification as boundary conditions;

⊲ Derive scales for measures within the

feasible region;

⊲ Aggregate evaluations and select the op-

timal measure.
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Evaluation: Boundary Conditions

Axioms as testable predicates:

BC1. Axiom A1: (D(V)— domain of V)

(∀P, Q)( P = Q ∧P ∈ D(V) ) ⇒ Q ∈ D(V)

BC2. Axiom A2:

(∀P, Q)( (IN(P, Q) ∨ IN(Q, P)) ∧ P ∈ D(V) )

BC3. Modified Axiom A3:

(∃K)(∀P, Q) ( dist(P, Q) > K ) ⇒ V(P) ≤ V(Q)

BC4. Assumed true.

BC5. Modified Axiom A5:

(∀k ∈ ℜ)(∃δ > 0) prob(V(P) ∈ [k−δ, k+δ]) < 1
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Evaluation: Screening Using Axioms

Example Measure: V(P) = 1 − 1
s(P )

, where

s(P) is the statement count of P .

Screening:

⊲ BC1 is satisfied because D(V) = U;

⊲ BC2 same as above;

⊲ BC3 is satisfied because:

(∀P, Q) (0 < s(P) < s(Q)) ⇒
(

1 − 1
s(P )

< 1 − 1
s(Q)

)

⊲ BC5 is not satisfied because:

prob(V(P) ∈ [1 − δ,1 + δ]) = 1

Result: Reject V due to violation of BC5.
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Evaluation: Screening Using Classes

BC6: Appropriate class depends on goals.

Goal 1. Documentation vs. comprehension.

Target: Non-abstract class.

Reject: Abstract class.

Goal 2. Object code size assessment.

Target: Abstract class.

⊲ Total line count might be acceptable;

⊲ Blank line count is rejected.

Goal 3. Programming effort prediction.

Target: Both abstract & non-abstract classes.

Reason: Both contribute to effort.
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Evaluation: Monotonicity Scale

Assumption: Prefer measures that better ap-

proximates monotonicity;

Need to capture the extent and frequency of

non-monotonic deviations;

Scale S1: The monotonicity scale is 〈T, pm〉,

where T is the period of monotonicity:

T = min
K

( dist(P, Q) > K ⇒ V(P) ≤ V(Q) )

and pm is the conditional probability of non-

monotonic component-composite pairs:

pm = prob(V(P) > V(Q) | IN(P, Q))
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Evaluation: Distribution Scale

Assumption: Uniform distribution desirable.

Need to capture:

⊲ Significant points on the scale;

⊲ Uniformity of these points.

Uniformity Scale S3: For measure V, ǫ > 0,

δ > 0, and pk = prob(kδ ≤ V(P) < (k+1)δ),

S3 = 〈n, d〉, where n and d are the cardinal-

ity and the normalized s.d. of {pk | pk > ǫ}.

d =



















0 if n = 0

√

∑

k(1−npk)
2

n otherwise
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Evaluation: Scale & Dominance Relation

Global Scaling Vector G is defined on rele-

vant scales {Sj} with G(V)[i] defined suc-

cessively as:

G(V)[i] =

{

Sj(V)[k] if opt = max

−Sj(V)[k] if opt = min

until all individual scaling dimensions Sj(V)[k]

are exhausted.

Dominance Relation: A measure Vi is said to

dominate another measure Vj if

( G(Vi) ≥ G(Vj) )∧(∃k)( G(Vi)[k] > G(Vj)[k] )

Elimination: All dominated measures are elim-

inated.
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Evaluation: Objective Function

Assess the importance and trade-off among Sj

to form weight vector W.

(∀i, j, k) W(Vi)[k] = W(Vj)[k] = W[k]

Example: the weight for S1 could be d × pc.

The selection problem reduces to the constrained

optimization problem:

max
i



fi =
∑

j

G(Vi)[j] ∗W[j])





such that:

Vi satisfies all boundary conditions.
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Application and Model Validation

1. Application domain: risk identification for

projects in NASA/SEL;

2. Pilot experiment: apply the scientific model

to select complexity measures;

3. Data collection: run multiple applications

and collect results;

4. Analyze resulting data-points to validate

the scientific model.
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Application: Risk Identification

Risk in software decisions:

⊲ Multiple alternatives;

⊲ Uncertainty about future development;

⊲ Large investment;

⊲ Significant consequences.

Risk Identification via CTA (Selby&Porter):

⊲ Risk: likelihood of high cost or effort;

⊲ High cost: highest quartile (80:20 rule);

⊲ Basis: historical data;

⊲ Methodology: classification trees.
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Application: CTA Prediction Example

Predictions are made based on:

⊲ Classification tree;

⊲ Sample module measurement data:

Modules
m1 m2 m3 m4 m5

cyclomatic 3 8 13 30 45
complexity

function plus 8 40 7 3 12
module call

operators 30 18 10 33 58
count

module 3 4 3 0 5
calls

prediction − ? − − +

actual − − + − +
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Application: CTA Cost & Performance

Cost factors:

⊲ Tree generation: measure pool size S;

⊲ Tree usage: tree-complexity/node-count.

Performance Measures:

⊲ Coverage: Predictions made;

⊲ Accuracy: Correct predictions;

⊲ Completeness: Correct predictions of

actual high cost modules;

⊲ Consistency: Correct high cost predictions.
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Application: CTA Performance

Compare predicted and actual data:

Coverage = P
P + N

Accuracy =
M11 + M22

P

Completeness =
M11
A+

Consistency =
M11
P+

Actual
+ − +/−

Predicted + M11 M12 P+

− M21 M22 P−

+/− A+ A− P
not identified N
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Pilot: Problem & Screening

Environment: NASA/SEL;

Goal: Identify high cost modules using com-

plexity measures.

Consequence: Eliminate non-complexity

measures, reducing S from 74 to 40 .

Screening of measures:

⊲ BC1 and BC2 true because D(V)= U;

⊲ BC3 eliminates right half of Table 2;

⊲ BC5 true from observing data;

⊲ BC6 true because all aspects contribute

to total effort;

⊲ Result: Measure pool S reduced from

40 to 18.

Prof. Jeff Tian Fall 2017



Software Metrics and Quality Engineering CSE 8314 (IV)36

Pilot: Measure Selection

Criteria: Conformance between V and total-

effort distribution. No need for S1.

Derivation: Mark a quartile “+” if pi(V) ≥

0.75 and “−” if ni(V) ≥ 0.75, where:

⊲ mi(V) = #modules in quartile i;

⊲ pi(V) = prob(m4(effort)|mi(V) );

⊲ ni(V) = 1 − pi(V).

max
V,V∈S



















































4
∑

i = 1,
pi(V) ≥ 0.75

∨ni(V) ≥ 0.75

{mi(V)pi(V) + mi(V)ni(V)}
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Pilot: Prediction Result

ACTA: Actual
+ − total

Predicted + 7 17 24
− 4 143 147

total 11 160 171

OCTA: Actual
+ − total

Predicted + 7 32 39
− 4 129 133

total 11 161 172

performance measure OCTA ACTA

not identified 4 5
correctly identified 136 150

incorrectly identified 36 21

coverage 97% 97%
accuracy 79% 87%

completeness 63% 63%
consistency 17% 29%
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Validation: Problems and Environment

Goal: Extrapolate pilot study result to validate

our model.

Embedded Environment: NASA/SEL:

⊲ 16 ground support projects ;

⊲ SLOC: 3K to 112K of Fortran code;

⊲ Staffing: 4-23 (5-25M / 5-140 MM);

⊲ Modules: 83-531/proj, 4700+ total;

⊲ Measures: 74 collected.

Direct Environment: CTA:

⊲ Training set size: 1;

⊲ Testing on immediate next project;

⊲ 10 data points from 16 raw data;

⊲ 5 data points from isolated data.
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Validation: Result Comparison

Overall Comparison:

OCTA ACTA

cost measure pool 40 18
tree size (all) 12.5 9.1
tree size (-1) 7.3 4.4

perform- coverage 97.6% 97.0%
ance accuracy 69.7% 74.5%

consistency 38.4% 50.4%
completeness 35.6% 36.0%
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Validation: Validation Result

1. Comparing with original CTA, measure se-

lection using our model is effective:

⊲ Cost: Measure pool size and classifi-

cation tree complexity are reduced dra-

matically;

⊲ Performance: Coverage and complete-

ness remain virtually the same; Accu-

racy and consistency are improved.

2. Comparing with random guessing, CTA based

on either measure selection method made

great improvement, well worth the cost.

3. The multiple data-points indicate the va-

lidity of our model.
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Validation: Baselines

Baseline 1: Original CTA.

Baseline 2: Optimal Random Guessing:
coverage = 100%
accuracy = 62.5%

completeness = 25%
consistency = 25%

Comment: Other random guessing:

⊲ consistency ≡ 25%;

⊲ max(accuracy) = 75%

with 0 completeness;

⊲ max(completeness) = 100%

with 25% accuracy.
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Conclusion

• Our model provides a scientific model of

program complexity to understand and im-

prove software process;

• Our theory of program complexity embod-

ies the empirical research and extends for-

mal models in this area;

• Our technique of measure evaluation demon-

strates the usability of our theory in solving

software engineering problems;

• Our model appears valid and effective as

demonstrated by the multiple applications.
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