Software Metris and Quality Engineering CSE 8314 — Fall 2019

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8314.19f

Module IV: Formal Models for Metrics **Evaluation**

- Formal Models/Axioms for Metrics Evaluation
- Prather, Weyuker, et al.
- Tian-Zelkowitz Approach
- Application and Validation;

Overview: Measurement

To achieve the goal of controlled software development, we need to:

- Develop an engineering discipline;
- Measure and evaluate the working product;
- Construct a *scientific* model for program measurement:
 - \triangleright Techniques from other disciplines;
 - Develop new techniques if necessary;
 - ▷ Basic questions:
 - What to measure: goal & environ.
 - How to measure it: metrics & tools
 - Selection and validation

Overview: Our Solution Strategy

Need a *scientific* model of program complexity:

- 1. Develop a *theory* of program complexity to organize empirical knowledge;
- Develop a *technique* for measure evaluation and selection to extrapolate measurement activities to new applications;
- 3. *Validate* the model using data from NASA Software Engineering Laboratory.
- **Comments:** The theory is a systematic extension to earlier studies by Prather, Fenton and Whitty, and Weyuker.

Previous Work: Prather

• Prather's axioms:

$$\triangleright m(S_1; S_2; \dots; S_n) \ge \sum_i m(S_i)$$

$$\triangleright 2(m(S_1) + m(S_2))$$

$$\ge m(if \ P \ then \ S_1 \ else \ S_2)$$

$$> m(S_1) + m(S_2)$$

$$\triangleright 2m(S) \ge m(while \ P \ do \ S) > m(S)$$

- Observations/discussions:
 - earliest attempt on axiomatic model
 - ▷ some intuition captured:
 - e.g., interactions
 - ▷ limited scope
 - ▷ justification for some axioms?

Previous Work: Fenton

• Fenton's hierarchical complexity:

$$\triangleright m(seq(F_1, \dots, F_n)) = g_n(m(F_1), \dots, m(F_n)) \triangleright m(F(F_1 on x_1, \dots, F_n on x_n)) = h_F(m(F), m(F_1), \dots, m(F_n))$$

- Observations/discussions:
 - ▷ general framework
 - too general?
 - ▷ contrast with Prather's work
 - ▷ relation to later work
 - add specifics
 - measurement theory based work

Previous Work: Weyuker

• Weyuker's Desirable Properties:

1.
$$(\exists P, Q) (\mathcal{V}(P) \neq \mathcal{V}(Q))$$

2. $\{P, \mathcal{V}(P) = c\}$ is finite
3. $(\exists P, Q) (P \neq Q) \land (\mathcal{V}(P) = \mathcal{V}(Q))$
4. $(\exists P, Q) (P = Q) \land (\mathcal{V}(P) \neq \mathcal{V}(Q))$
5. $(\forall P, Q) (\mathcal{V}(P) \leq \mathcal{V}(P; Q) \land \mathcal{V}(Q) \leq \mathcal{V}(P; Q))$
6. $(\exists P, Q, R) (\mathcal{V}(P) = \mathcal{V}(Q) \land \mathcal{V}(P; R) \neq \mathcal{V}(Q; R))$
7. $(\exists P, Q) (P = perm(Q) \land \mathcal{V}(P) \neq \mathcal{V}(Q))$
8. $(\forall P) (\forall x, y) \mathcal{V}(P) = \mathcal{V}(P^x)$

8. $(\forall P) (\forall x, y) \mathcal{V}(P) = \mathcal{V}(P_y^{\infty})$ 9. $(\exists P, Q) (\mathcal{V}(P) + \mathcal{V}(Q) < \mathcal{V}(P; Q))$

Previous Work: Weyuker

- About Weyuker's properties:
 - more systematic treatment
 - ▷ inspired/lead to many followup work
 - positive: refinement
 - negative: counter examples
 - other: development & alternatives
- Important followup works:
 - ▷ measurement theory based, Zuse
 - Cherniavsky and Smith
 - ▷ Tian and Zelkowitz
 - Briand and Basili
 - ▷ others...

Previous Work: Weyuker

- Tian/Zelkowitz as followup:
 - > merit of Weyuker's properties
 - ▷ some universally satisfied
 - basis for universal axioms
 - ▷ some for certain types of metrics
 - classification?
 - ▷ a theory based on the above
 - ▷ an evaluation/selection process
- Followup to Weyuker and Tian/Zelkowitz
 - ▷ Briand/Basili property-based metrics
 - ▷ GQM and property/axiom/etc.
 - ▷ Metrics validation work (Schneidewind)
 - ▷ Other theoretical work

Overview: Tian/Zelkowitz

- Tian/Zelkowith Theory/Framework
- Axioms: Define program complexity and state common properties.
- **Dimensionality Analysis:** provide the basis for metrics classification
 - Aspects or dimensions:
 presentation, control, data;
 - ▷ Levels: lexical, syntactic, semantic.
- **Classification Scheme:** Define mutually exclusive and collectively exhaustive classes.

Theory: Axiom Overview

Complexity: Relationship between program-pairs;

Comparability: Programs with identical functionality are comparable (**A1**); Composite programs are comparable to their components (**A2**).

Monotonicity: Sufficiently large programs will become more complex (A3).

Measurability: Measures on programs must agree with underlying complexity (A4).

Diversity: Distribution of measured complexity must not form a single cluster (A5).

Theory: Defining Complexity

Definition: A complexity ranking \mathcal{R} is a binary relation on programs. Given programs Pand Q, we interpret $\mathcal{R}(P,Q)$ as P being no more complex than Q.

 $\mathcal{C}(P,Q)$ iff $\mathcal{R}(P,Q) \vee \mathcal{R}(Q,P)$.

Comments:

- \triangleright It is *internal* to the programs;
- \triangleright Related empirical to external properties;
- Very broad definition, need further qualification and quantification.

Theory: Comparability Axioms

Axiom A1: $(\forall P, Q)$ ($P = Q \Rightarrow C(P, Q)$)

i.e., functionally equivalent programs are comparable.

Axiom A2: $(\forall P, Q)$ $(IN(P, Q) \Rightarrow C(P, Q))$ i.e., a composite program is comparable with its components.

Comments:

- \triangleright Hard problem due to undecidability;
- $\triangleright \mathcal{R}$ is self-reflexive;
- $\triangleright \mathcal{R}$ is not transitive.

Theory: Monotonicity Axiom

Axiom A3: (∃K ∈ N)(∀P,Q)
 (IN(P,Q) ∧ (dist(P,Q) > K)) ⇒ R(P,Q))
 i.e., sufficiently large programs will not be ranked lower in complexity.

• Comments:

- ▷ General trend must be followed;
- ▷ Local deviations allowed.

Theory: Measure Definition Axiom

Definition: A *complexity measure* \mathcal{V} is a quantification of complexity ranking \mathcal{R} . \mathcal{V} maps programs into real numbers:

$\mathcal{V}:\mathbf{U}\Rightarrow\Re$

Axiom A4: $(\forall P, Q)$ $(\mathcal{R}(P, Q) \Rightarrow \mathcal{V}(P) \leq \mathcal{V}(Q))$ i.e., a measure must agree with the ranking it is approximating.

Non-Axiom: Commonly assumed by other complexity models:

$$(\forall P,Q) \ (\mathcal{V}(P) \leq \mathcal{V}(Q) \Rightarrow \mathcal{R}(P,Q))$$

Incomparable cases;

▷ Non-transitive cases;

Theory: Distribution Axiom

Requirement: Measure values must not cluster around one single dominating point.

Axiom A5: $(\forall k \in \Re)(\exists \delta > 0)$

 $(|\mathbf{U} - \{P : \mathcal{V}(P) \in [k - \delta, k + \delta]\}| = |\mathbf{U}|)$

Axiom A5': $(\forall k \in \Re)(\exists \delta > 0)$

$$\sum_{P,\mathcal{V}(P)\in[k-\delta,k+\delta]} prob(P) < 1$$

Rationale: A single dominating cluster is disallowed because it fails to achieve the goal of providing comparison for programs.

Theory: Complexity Dimensions

Presentation: Physical presentation for readers that has no effect on functionality.

Control: Instructions, control structures, and control dependencies.

Data: Data items, data structures, and data dependencies.

Comments:

- \triangleright Control + Data = Abstract;
- ▷ Orthogonal dimensions.

Theory: Measurement Levels

Lexical: Token based measure computation;

Syntactic: Directly syntax based measure computation;

Semantic: Semantic analysis needed for measure computation.

Comments:

- ▷ 27 possible points in a 3-D space;
- \triangleright Space proximity \approx Measure similarity;
- Dividing control and data dimensions: 1.
 count, 2. structure, 3. dependency.

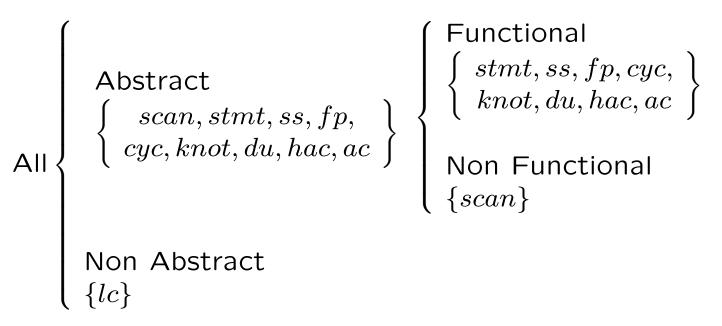
Theory: Vertical Classification

Classification based on computational models used:

- ▷ Depend only on syntax trees of programs? Yes, Abstract. No, non-abstract.
- ▷ Invariant to renaming?

Yes, Functional. No, non-functional.

Theory: Vertical Classification Example

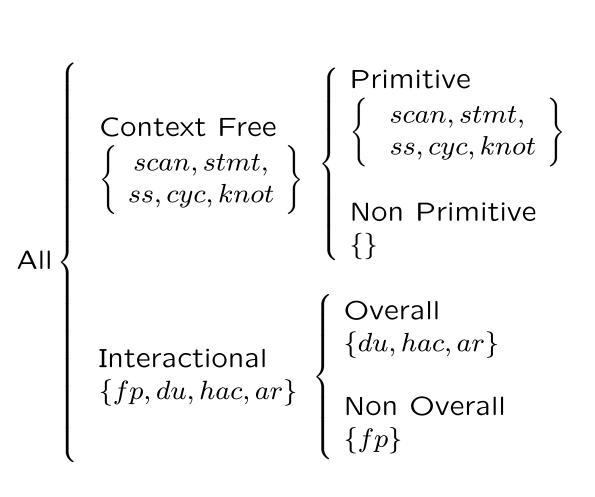


Theory: Hierarchical Classification

Classification based on complexity relations of component-composite programs:

- Sensitive to context?
 Yes, interactional. No, context free.
 Depend only on building element but not organization?
 Yes, Primitive. No, non-primitive.
- Capture both interface and internal?
 Yes, Overall. No, non-overall.

Theory: Hier. Classification Example



Evaluation: Problems and Solutions

Problem: Evaluation of complexity measures;

Assumption: Measures satisfy Axiom A4:

View: Measures as points in a measure space;

Solution Strategy:

- ▷ Define feasible region by using axioms and classification as boundary conditions;
- ▷ Derive scales for measures within the feasible region;
- Aggregate evaluations and select the optimal measure.

Evaluation: Boundary Conditions

Axioms as testable predicates:

- **BC**₁. Axiom A1: $(\mathcal{D}(\mathcal{V}))$ domain of \mathcal{V}) $(\forall P, Q)([P] = [Q] \land P \in \mathcal{D}(\mathcal{V})) \Rightarrow Q \in \mathcal{D}(\mathcal{V})$
- **BC** $_2$ **.** Axiom A2:

 $(\forall P, Q)((\operatorname{IN}(P, Q) \lor \operatorname{IN}(Q, P)) \land P \in \mathcal{D}(\mathcal{V}))$

- **BC**₃. Modified Axiom A3: $(\exists K)(\forall P,Q) (dist(P,Q) > K) \Rightarrow \mathcal{V}(P) < \mathcal{V}(Q)$
- **BC**₄. Assumed true.
- **BC**₅. Modified Axiom A5: $(\forall k \in \Re)(\exists \delta > 0) \ prob(\mathcal{V}(P) \in [k-\delta, k+\delta]) < 1$

Evaluation: Screening Using Axioms

Example Measure: $\mathcal{V}(P) = 1 - \frac{1}{s(P)}$, where s(P) is the statement count of P.

Screening:

- \triangleright **BC**₁ is satisfied because $\mathcal{D}(\mathcal{V}) = \mathbf{U}$;
- \triangleright **BC**₂ same as above;
- \triangleright **BC**₃ is satisfied because:

 \triangleright **BC**₅ is not satisfied because:

$$prob(\mathcal{V}(P) \in [1 - \delta, 1 + \delta]) = 1$$

Result: Reject \mathcal{V} due to violation of **BC**₅.

Evaluation: Screening Using Classes

- BC_6 : Appropriate class depends on goals.
- **Goal 1.** Documentation vs. comprehension. Target: Non-abstract class. Reject: Abstract class.
- Goal 2. Object code size assessment. Target: Abstract class.
 - \triangleright Total line count might be acceptable; ▷ Blank line count is rejected.
- **Goal 3.** Programming effort prediction. Target: Both abstract & non-abstract classes. Reason: Both contribute to effort.

Evaluation: Monotonicity Scale

Assumption: Prefer measures that better approximates monotonicity;

- **Need** to capture the *extent* and *frequency* of non-monotonic deviations:
- **Scale S**₁: The monotonicity scale is $\langle T, p_m \rangle$, where T is the period of monotonicity:
 - $T = \min_{K} (dist(P,Q) > K \implies \mathcal{V}(P) \le \mathcal{V}(Q))$ and p_m is the conditional probability of nonmonotonic component-composite pairs:

$$p_m = prob(\mathcal{V}(P) > \mathcal{V}(Q) \mid IN(P,Q))$$

Evaluation: Distribution Scale

Assumption: Uniform distribution desirable.

Need to capture:

- ▷ Significant points on the scale;
- ▷ Uniformity of these points.

Uniformity Scale S₃: For measure \mathcal{V} , $\epsilon > 0$, $\delta > 0$, and $p_k = prob(k\delta \le \mathcal{V}(P) < (k+1)\delta)$, $\mathbf{S}_3 = \langle n, d \rangle$, where n and d are the cardinality and the normalized s.d. of $\{p_k \mid p_k > \epsilon\}$.

$$d = \begin{cases} 0 & \text{if } n = 0 \\ \sqrt{\frac{\sum_k (1 - np_k)^2}{n}} & \text{otherwise} \end{cases}$$

Evaluation: Scale & Dominance Relation

Global Scaling Vector \mathcal{G} is defined on relevant scales $\{\mathbf{S}_{j}\}$ with $\mathcal{G}(\mathcal{V})[i]$ defined successively as:

$$\mathcal{G}(\mathcal{V})[i] = \begin{cases} \mathbf{S}_j(\mathcal{V})[k] & \text{if opt} = \max \\ -\mathbf{S}_j(\mathcal{V})[k] & \text{if opt} = \min \end{cases}$$

until all individual scaling dimensions $\mathbf{S}_{j}(\mathcal{V})[k]$ are exhausted.

Dominance Relation: A measure V_i is said to dominate another measure \mathcal{V}_i if

 $(\mathcal{G}(\mathcal{V}_i) \geq \mathcal{G}(\mathcal{V}_j)) \land (\exists k) (\mathcal{G}(\mathcal{V}_i)[k] > \mathcal{G}(\mathcal{V}_j)[k])$

Elimination: All dominated measures are eliminated.

Evaluation: Objective Function

Assess the importance and trade-off among \mathbf{S}_j to form weight vector \mathcal{W} .

$$(\forall i, j, k) \ \mathcal{W}(\mathcal{V}_i)[k] = \mathcal{W}(\mathcal{V}_j)[k] = \mathcal{W}[k]$$

Example: the weight for S_1 could be $d \times p_c$.

The selection problem reduces to the constrained optimization problem:

$$\max_{i} \left(f_{i} = \sum_{j} \mathcal{G}(\mathcal{V}_{i})[j] * \mathcal{W}[j]) \right)$$

such that:

 \mathcal{V}_i satisfies all boundary conditions.

Application and Model Validation

- 1. Application domain: risk identification for projects in NASA/SEL;
- 2. Pilot experiment: apply the scientific model to select complexity measures;
- 3. Data collection: run multiple applications and collect results;
- 4. Analyze resulting data-points to validate the scientific model.

Application: Risk Identification

Risk in software decisions:

- ▷ Multiple alternatives;
- Uncertainty about future development;
- ▷ Large investment;
- ▷ Significant consequences.

Risk Identification via CTA (Selby&Porter):

- ▷ Risk: likelihood of high cost or effort;
- ▷ High cost: highest quartile (80:20 rule);
- ▷ Basis: historical data;
- ▷ Methodology: classification trees.

Application: CTA Prediction Example

Predictions are made based on:

- ▷ Classification tree;
- Sample module measurement data:

	Modules				
	m_1	m_2	m_{3}	m_{4}	m_5
cyclomatic complexity	3	8	13	30	45
function plus module call	8	40	7	3	12
operators count	30	18	10	33	58
module calls	3	4	3	0	5
prediction		?	_	_	+
actual	_	_	+	_	+

Application: CTA Cost & Performance

Cost factors:

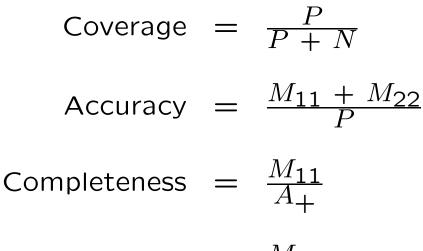
- ▷ Tree generation: measure pool size S;
- ▷ Tree usage: tree-complexity/node-count.

Performance Measures:

- ▷ Coverage: Predictions made;
- Accuracy: Correct predictions;
- Completeness: Correct predictions of actual high cost modules;
- ▷ Consistency: Correct high cost predictions.

Application: CTA Performance

Compare predicted and actual data:



Consistency =
$$\frac{M_{11}}{P_+}$$

		Actual		
		+	_	+/-
Predicted	+	M_{11}	M_{12}	P_+
	_	M_{21}	M_{22}	<i>P</i> _
	+/-	A_+	A_{-}	P
not ident	not identified			\overline{N}

Pilot: Problem & Screening

Environment: NASA/SEL;

Goal: Identify high cost modules using complexity measures. Consequence: Eliminate non-complexity measures, reducing S from 74 to 40.

Screening of measures:

- \triangleright **BC**₁ and **BC**₂ true because $\mathcal{D}(\mathcal{V}) = \mathbf{U}$;
- \triangleright **BC**₃ eliminates right half of Table 2;
- \triangleright **BC**₅ true from observing data;
- \triangleright **BC**₆ true because all aspects contribute to total effort;
- ▷ **Result:** Measure pool **S** reduced from 40 to 18.

Pilot: Measure Selection

Criteria: Conformance between \mathcal{V} and total*effort* distribution. No need for S_1 .

Derivation: Mark a quartile "+" if $p_i(\mathcal{V}) \geq$ 0.75 and "-" if $n_i(\mathcal{V}) \ge 0.75$, where:

$$m_i(\mathcal{V}) = \# \text{modules in quartile } i;$$

$$p_i(\mathcal{V}) = prob(m_4(\text{effort})|m_i(\mathcal{V}));$$

$$p_i(\mathcal{V}) = 1 - p_i(\mathcal{V}).$$

$$\max_{\mathcal{V},\mathcal{V}\in\mathbf{S}} \begin{cases} \sum_{\substack{i=1,\\p_i(\mathcal{V}) \ge 0.75\\\forall n_i(\mathcal{V}) \ge 0.75}} \{m_i(\mathcal{V})p_i(\mathcal{V}) + m_i(\mathcal{V})n_i(\mathcal{V})\} \end{cases}$$

Pilot: Prediction Result

ACTA:		Actual		
		+	_	total
Predicted	+	7	17	24
	—	4	143	147
	total	11	160	171

OCTA:		Actual		
		+		total
Predicted	+	7	32	39
	—	4	129	133
	total	11	161	172

performance measure	ΟΟΤΑ	ACTA
not identified	4	5
correctly identified	136	150
incorrectly identified	36	21
coverage	97%	97%
accuracy	79%	87%
completeness	63%	63%
consistency	17%	29%

Validation: Problems and Environment

Goal: Extrapolate pilot study result to validate our model.

Embedded Environment: NASA/SEL:

- \triangleright 16 ground support projects ;
- ▷ SLOC: 3K to 112K of Fortran code;
- ▷ Staffing: 4-23 (5-25M / 5-140 MM);
- ▷ Modules: 83-531/proj, 4700+ total;
- ▷ Measures: 74 collected.

Direct Environment: CTA:

- \triangleright Training set size: 1;
- Testing on immediate next project;
- \triangleright 10 data points from 16 raw data;
- \triangleright 5 data points from isolated data.

Validation: Result Comparison

Overall Comparison:

		ΟСΤΑ	ACTA
cost	measure pool	40	18
	tree size (all)	12.5	9.1
	tree size (-1)	7.3	4.4
perform-	coverage	97.6%	97.0%
ance	accuracy	69.7%	74.5%
	consistency	38.4%	50.4%
	completeness	35.6%	36.0%

Validation: Validation Result

- 1. Comparing with original CTA, measure selection using our model is effective:
 - Cost: Measure pool size and classification tree complexity are reduced dramatically;
 - Performance: Coverage and completeness remain virtually the same; Accuracy and consistency are improved.
- Comparing with random guessing, CTA based on either measure selection method made great improvement, well worth the cost.
- 3. The multiple data-points indicate the validity of our model.

Validation: Baselines

Baseline 1: Original CTA.

Baseline 2: Optimal Random Guessing: coverage = 100% accuracy = 62.5%completeness = 25%

consistency = 25%

Comment: Other random guessing:

- ▷ consistency $\equiv 25\%$;
- ▷ max(accuracy) = 75%
 with 0 completeness;
- max(completeness) = 100%
 with 25% accuracy.

Conclusion

- Our model provides a scientific model of program complexity to understand and improve software process;
- Our theory of program complexity embodies the empirical research and extends formal models in this area;
- Our technique of measure evaluation demonstrates the usability of our theory in solving software engineering problems;
- Our model appears valid and effective as demonstrated by the multiple applications.