Software Reliability and Safety CSE 8317 — Fall 2005

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.05f

OV.2. Review

- QA Alternatives/Activities and Their Relation to CSE 8317
- Fault Tolerance in SSE: SQE Ch.16a
- Common Techniques: SQE Ch.20 & 21

Review: QA Alternatives

- Defect prevention/removal/tolerance
 - - Part I (particularly Chapter 3)
 - Parts II and III (high-level only)
- Defect prevention:
- Defect removal: Inspection/testing/etc.
- Defect tolerance:

 - ▷ Damage minimization (safety)

- SRE relation/applications:
 - QA alternatives directly work with SRE
 - \triangleright Functional relation: reliability \sim failure
 - \triangleright Remember? error \Rightarrow fault \Rightarrow failure
 - ▷ All will affect the end results/failures
 - - ⇒ closer to SRE activities (e.g., system and acceptance testing)
- SSE relation/applications:
 - More focused (not as broad)

 - Specifics to be examined later

• Inspection:

- Works on many software artifacts
- Conceptual/static faults
- ▶ High fault density situations
- ▶ Human intensive, varied cost

Applications in SRE and SSE

- ▶ Fault eliminations:
 - helps both reliability and safety
- Scenario-based inspection:
 - for SRE common usage scenarios
 - for SSE FTA/ETA-based scenarios/elements
- Early reliability prediction
- Safety constraints and inspection
- Leveson's process-based approach

- Formal verification: SQE Ch.15
 - ▶ Works on code with formal spec.
 - ▷ Practicality: high cost → benefit?
 - Human intensive, rigorous training
- Applications in SRE and SSE

 - ▶ Module SSE.3

 - ▶ Leveson's approach:
 - safety and other constraints
 - carried through dev. process
 - - table-driven, model checking, etc
 - PSC, module SSE.4

• Testing:

- > Important link in dev. process
- > Activities spilt over to other phases
 - OP/testcase development
- Dynamic/run-time/interaction problems
- > Test tools and execution support
- > Technique: analysis/behavior-based

Applications in SRE and SSE

- Chief application domain for SRE
- ▷ OP-based testing:
 - basis for reliability modeling
- ▶ Indirect link to SSE

Fault tolerance:

- Dynamic problems

- ▶ High cost

Applications in SRE and SSE

- As hazard reduction technique in SSE
- Other related SSE techniques:
 - general redundancy
 - substitution/choice of modules
 - barriers and locks
 - analysis of FT

QA and **Safety**

- Hazard elimination through defect prevention and removal
- Reduce fault injection

 - > Specific: better software designs
 - complexity↓
 - decoupling
 - certified components, etc.
 - ▶ Formal specification & verification
 - focus on safety req. & assertions
- Fault removal focused on safety

 - ▶ Inspection and verification (earlier)

QA and Safety

- Hazard reduction through
 - ▶ Redundancy (fault tolerance)
 - ▷ Process and safety standards, etc.
 - General barriers and safety margins
- Hazard control
 - ▶ Isolation and containment
 - ▶ Protection system
 - ⊳ "active"
 - ▷ Typically beyond traditional QA
- Related: post-accident damage reduction (typically beyond traditional QA)

Specialized QA for Safety

- Focused formal verification in connection with hazard analysis
 - Only safety-critical part formally verified
 - > Combination of different techniques
 - Safety-constraints driven
- Fault tolerance ⇒ hazard tolerance
 - > Safety vs. operational concerns
 - ▷ If problem, shut down but safe
 - vs. operation with reduced capacity
 - SQE Ch.15a
- Ideas into Leveson's SSP: integration into development process.