Software Reliability and Safety CSE 8317 — Spring 2005

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.05s

O. Overview and QA Review

- About CSE 8317
- Reliability and Safety Overview
- Review: QA Alternatives/Activities and Their Relation to CSE 8317

Quality: Views and Aspects

View	Attribute	
	Correctness	Effectiveness
Customer	Failures:	Usability
(external)	reliability	Maintainability
	safety	Portability
		Performance
		Installability
		Readability
Developer	Faults:	Design
(internal)	count	Size
	distr	Change
	class	Complexity
	hazard	control
		data
		presentation

- 8317: Reliability/safety focus
- Things contribute to reliability/safety

What Is Reliability?

- Reliability: Probability of failure-free operation for a specific time period or for a given set of input conditions under a specific environment
 - ▷ Failure: behavioral deviations
 - ▷ Time: how to measure?
 - ▷ Input: sampling and measurement
 - ⊳ Environment: OP
- Software reliability engineering (SRE):
 - ▷ Failure detection and fault removal
 - Measurement and data collection
 - Reliability assessment
 - Reliability and other predictions
 - Decision making and management
 - Reliability and process improvement

What Is Safety?

- *Safety:* The property of being accident-free for (embedded) software systems.
 - ▷ Accident: failures with severe consequences
 - ▷ Hazard: condition for accident
 - Special case of reliability
 - Specialized techniques
- Software safety engineering (SSE):
 - ▷ Failure prevention and fault tolerance
 - Hazard identification/analysis techniques
 - Hazard resolution alternatives
 - ▷ Safety and risk assessment
 - ▷ Qualitative focus
 - Safety and process improvement

Reliability, Safety and Defects

- Defect/bug definition/clarification
 - ▷ Failure: external behavior
 - deviation from expected behavior
 - ▷ Fault: internal characteristics
 - cause for failures
 - Error: missing/incorrect actions
 - ▷ Relations (not necessarily 1-1)
 - ▷ Safety-related: accident & hazard
- Defect and quality assurance/analysis
 - Quality (reliability/safety) analysis
 - Preventive actions based on analysis
 - ▷ Fault removal: insp./testing/verification
 - ▷ Fault tolerance

Measurement, Analysis, & Modeling

- Measurement data
 - ▷ Result: success/failure/accident/etc.
 - ▷ Activity: testing/usage/etc.
 - Product internal: static/dynamic
 - ▷ Environmental: process/people/setup/etc.
- Analysis and modeling:
 - \triangleright Data \Rightarrow safety & reliability.
 - Based on reliability/safety models
 - ▷ Followup actions:
 - management decisions
 - problematic areas identification
 - reliability/safety/process improvement

Reliability Analyses and Models

- Time domain approach
 - ▷ Failure arrival process
 - Statistical modeling
 - Failure count/interval/rate data
 - Time and other measurements
 - SRGMs: s/w reliability growth models
 - Assessment/prediction/decisions
- Input domain approach
 - Repeated random sampling
 - Related definitions and models
 - input domain reliability models
 - Fault seeding models

Reliability Analyses and Models

- TBRMs: tree-based reliability models
 - ▷ Both time/input domain info.
 - ▷ Additional benefit:
 - risk identification
 - guide for focused remedial actions
 - Technique: tree-based modeling
 - Development/application/SMU research
 - ▷ Major focus in 8317
- Other related issues
 - ▷ Implementation & applications
 - ▷ OP development & QA activities
 - Fault/defect modeling
 - Data treatment

Safety Analysis & Improvement

- Hazard analysis:
 - ▷ Hazard: condition for accident
 - ▷ Fault trees: (static) logical conditions
 - ▷ Event trees: dynamic sequences
 - Combined and other analyses
 - ▷ Generally qualitative
 - ▷ Related: hazard and risk assessment
- Hazard resolution
 - ▷ Hazard elimination
 - ▷ Hazard reduction
 - ▷ Hazard control
 - Related: damage reduction

Hazard Elimination

- Fault prevention activities:
 - Preventive actions:
 - education/process/technology/etc
 - ▷ Formal specifition & verification
- Fault removal activities:
 - ▷ Rigorous testing
 - ▷ Inspection and verification
 - Static/dynamic analyses
- Other hazard elimination:
 - \triangleright Above \in traditional QA activities
 - ▷ "Safe" designs etc.

Hazard Reduction & Control

- Hazard reduction
 - ▷ Barrier and safety margins
 - Redundancy and fault tolerance
 - ▷ "passive" or "reactive"
- Hazard control
 - ▷ Isolation and containment
 - Protection system
 - ▷ "active"
- Related: post-accident damage reduction

How CSE 8317 Fits In?

- Software reliability engineering (SRE):
 - Observation-driven SRGMs/IDRMs;
 - Progress towards measurement-driven
 TBRMs and other models;
 - Statistical analysis techniques:
 - stochastic processes and curve fitting
 - predictive risk management
 - tree-based models & other techniques
 - ▷ reliability measurement and improvement.
- Software safety engineering (SSE):
 - ▷ Fault/event tree analyses, etc.;
 - ▷ Hazard elimination/reduction/control;
 - Process-based approach;
 - ▷ Formal verification and fault tolerance;
 - ▷ Prescriptive specification checking.

Review: QA Alternatives

- Defect prevention/removal/tolerance
 - ▷ Tian-SQP paper online.
 - ▷ Tian-SQEbook/slides online:
 - Part I (particularly Chapter 3)
 - Part III (high-level only)
- Defect prevention:
 - ▷ Error source elimination
 - Error blocking
- Defect removal: Inspection/testing/etc.
- Defect tolerance:
 - \triangleright Fault tolerance (failure))
 - Damage minimization (safety)

- Applicability, effectiveness, and cost
- Inspection:
 - ▷ Good throughout dev. process
 - ▷ Works on many software artifacts
 - Conceptual/static faults
 - ▷ High fault density situations
 - ▷ Human intensive, varied cost
- Applications in SRE and SSE
 - ▷ Fault eliminations:
 - helps both reliability and safety
 - Early reliability prediction
 - ▷ Safety constraints and inspection
 - Leveson's process-based approach

- Formal verification:
 - ▷ Works on code with formal spec.
 - \triangleright Practicality: high cost \rightarrow benefit?
 - Human intensive, rigorous training
- Applications in SRE and SSE
 - \triangleright High cost \Rightarrow most in SSE
 - ▷ Module VIII of CSE 8317
 - ▷ Focus through FTA and/or ETA
 - Leveson's approach:
 - safety and other constraints
 - carried through dev. process
 - ▷ Other adaptations:
 - table driven approach
 - PSC, module IX

• Testing:

- ▷ Important link in dev. process
- ▷ Activities spilt over to other phases
 - OP/testcase development
- Dynamic/run-time/interaction problems
- Test tools and execution support
- ▷ Technique: analysis/behavior-based
- ▷ Coverage vs. reliability focus
- Applications in SRE and SSE
 - Chief application domain for SRE
 - ▷ OP-based testing:
 - basis for reliability modeling
 - ▷ Indirect link to SSE

- Fault tolerance:
 - Dynamic problems
 - > Technique problems (independent NVP?)
 - Process/technology intensive
 - ▷ High cost
- Applications in SRE and SSE
 - ▷ Too expensive for regular SRE
 - ▷ As hazard reduction technique in SSE
 - ▷ Other related SSE techniques:
 - general redundancy
 - substitution/choice of modules
 - barriers and locks
 - analysis of FT