Software Reliability and Safety CSE 8317 — Spring 2005

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.05s

SSE.1: SSE Basics and SSP

- Basic Concepts and Definitions
- Fault Tolerance and SSE (SQE Ch.16a)
- Defining Embedded Systems
- Software Safety Program (SSP)

Safety and Embedded Systems

- Safety: The property of being accidentfree for (embedded) software systems.
 - Accident: failures with severe consequences
 - ▶ Hazard: condition for accident
 - Special case of reliability
 - Specialized techniques
 - > Focus on prevention and tolerance
- Embedded systems
 - > Failure and consequences
 - ▶ Interaction among sub-systems

Safety Analysis & Improvement

- Generic techniques and steps:
 - Hazard analysis and resolution
 - "Safeware" Ch.13-16 (our SSE.2)
 - identification and analysis
 - resolution: elimination/reduction/control
 - (briefly: SQE-Ch.16b)

 - ▷ PSC: SSE.4
- Leveson's SSP
 - ▷ SSP: software safety program
 - ▶ Integration of above
 - Spread over development process
 - ▷ "Safeware", Part IV (Ch.11-18)
- Main text for SSE in 8317: "Safeware".

Safety Analysis

- Hazard and risk identification:
 - ▶ Accident scenarios: actual/hypothetical
 - > Operations and operational env.
- Hazard analysis:

 - ▷ Event trees: dynamic sequences
 - Other analyses in "Safeware"
- Hazard and risk assessment
 - Quantitative vs qualitative
 - ▶ Probabilities/likelihood assessment
 - Worst case damage assessment

Safety Assurance & Improvement

- **Eliminate** identified hazard sources in material/component/software/etc.
- Reduce hazard severity/likelihood via:
 - Creating hazard barriers,
 - Minimizing failure probability, etc.
- Control or limit hazard scope via:
 - ▶ Isolation and containment,
 - ⊳ Fail-safe design, etc.
- Reduce damage (post-accident, as compared to pre-accident for the above)

QA and Safety

- QA alternatives and impact on safety.
- Hazard elimination through
 - ▶ Better software designs
 - complexity↓
 - decoupling
 - certified components, etc.
 - Effective fault removal through testing/inspection/SRE
 - > Formal verification of safety assertions
- Hazard reduction through
 - Redundancy (fault tolerance)
 - ▷ Process and safety standards, etc.

QA and **Safety**

- Specific/specialized QA techniques for safety.
- Focused formal verification in connection with hazard analysis
 - Only safety-critical part formally verified
 - > Combination of different techniques
 - Safety-constraints driven
- Fault tolerance ⇒ hazard tolerance
 - > Safety vs. operational concerns
 - ▷ If problem, shut down but safe
 - vs. operation with reduced capacity
- Ideas into Leveson's SSP.

Basic Definitions

Accident or mishap:

- □ unplanned (series of) events
- ▷ leading to unacceptable loss
 - death, injury, illness
 - equip./property/environment damage
- excess energy/dangerous substance
- > computers relatively safe
- ▷ but computer control ⇒ accidents

Hazard:

- ▷ a set of conditions leading to accidents under certain environmental conditions
- ▷ e.g.: guard gates at rail-crossing
- safety focus: control factors(vs. env. factors beyond control)
- ▷ analysis and resolution ⇒ SSE

Basic Definitions

- Risk: function of 3 elements
 - ▷ likelihood(hazard)
 - ▷ likelihood(hazard ⇒ accident)
 - worst possible loss due to accident (compare to expected loss)
- (System) safety engineering:
 - ▷ ensuring acceptable risk
 - scientific/management/engineering

 - hazard identification, assessment, analysis, and resolution

Safety: Why?

- Risk in modern society:
 - Serious accidents:
 - "Safeware" Appendix A-D
 - medical/aerospace/chemical/nuclear/etc.
 - > techniques for reducing risks
- Risk factors in industrialized society:
 - ▷ new technology ⇒ new hazard

 - ▷ increasing amount of energy
 - ▷ automation ↑ of manual operations
 - > increasing centralization and scale
 - ▷ increasing pace of tech. change

Computers and Risk

- Computer in safety-critical systems
 - - application-specific computer
 - general-purpose computer
 - functionality and flexibility
 - ▷ fact of life
 - ▷ critical functions (later)
- Software safety: difficulties
 - > continuous vs. discrete states
 - b the "curse of flexibility"
 - "Safeware" Fig.2.4 (p.35)
 - > complexity and invisible interface
 - ▷ lack of historical usage information
 - pure SE approach inadequate ⇒ SSE

Software Safety: Pure SE?

- Pure SE (S/w Eng.) approach
 - ▷ Safety constraints ⇒ requirements
 - Carried/verified in development stages
 - ⊳ Fig. 18.1 (a)
 - ▶ Basis: myths below.
- Software myths ("Safeware" Ch. 2.2):
 - > lower cost than other devices
 - ▷ software is easy to change

 - ⊳ software reliability ↑⇒ safety ↑
 - b testing/formal-veri. eliminate defects
 - ▷ reusing software ⇒ safety ↑
 - computers reduce risk over mechanical systems

Software Safety: Problems

- Assumptions and problems

 - - particularly NVP, intrinsic problems
 - LoQ still not enough
 - ▶ Formal verification
 - LoQ and scalability problem
- Problems and solutions:
 - Scalability and coverage

 - Not focus on safety-related artifacts
 - ⇒ SSE, particularly Leveson's SSP

System/Software Definitions

- System (general vs embedded):
 - Physical systems or processes
 - > A set of components
 - Common purposes/objectives
 - ▷ Description: input/output/time
 - Self-regulating vs. controlled
- Controller/Control subsystem:
 - > Providing control to system
 - order events
 - regulate variable values

System Definitions: Control Function

- Function (mathematical?) to be achieved

 - > state variables and matrices
 - > traditional vs. modern analysis
 - □ use of computers and implications
- Traditional analyses

 - ⊳ stability criteria
 - performance and other analysis
 - pre-requisite for safety

System Definitions: Control Function

- Modern control system analyses
 - state variables and set of equations
 - ▷ controllability & observability
 - other concerns:
 - optimality, robustness, adaptability, etc.
 - > computer controller

 - ∠ Z-transformation
- Example control systems
 - > traditional feedback control
 - state variable based
 - > sampling and discrete systems

Analysis and Constraints

- Previous analyses unconstrained (provide necessary but not sufficient condition for safety)
- Constraints on operating conditions
 - > quality considerations
 - effect of defects in system
 - performance and other measures
 - ▷ equipment capacity
 - time and/or energy constraints
 - volume, rate, etc.
 - process characteristics
 - above factors fit into process
 - given vs. adjustable aspects
 - safety constraints (next)(derived from analysis of above)

System Definitions: Safety Constraints

- Safety constraints:
 - Derived from safety process
 - particularly hazard id. FTA & ETA
 - ▷ Example: pressure threshold
 - ▶ Integration to other functions?
 - ▷ Discrete vs. continuous functions
- Handling of safety constraints:
 - Constrained optimization
 - feasibility and practicality problems
 - Usually handled separately:
 - different/conflicting concerns
 - different characteristics
 - feasibility of functional representation?
 - liability and regulatory concern

System Definitions: Software Safety

- Software functions in control systems:

 - > control function implementation
 - direct digital control (via actuators)
 - supervisory control (values/parameters)
 - maintenance of safety conditions
- Relating safety constraints to software:

Software Safety Program (SSP)

- Leveson's approach

 - Safety analysis and hazard resolution
 - ⊳ Safety verification: Fig. 18.1 (c)
 - few things carried over (dotted line)
 - ▶ Part IV, "Safeware"
 - particularly Chapters 15-18.
- Software safety program (SSP)

 - Based on hazard analyses results

Major activities

- Hazard identification and analysis
- > Safety verification
- Change analysis and operational feedback
- Fit in s/w process; Fig. 13.2 (p.293)

• Safety constraints and verification

- ▶ Identify problems early
- > Distributed verification effort
- - using safety/design/code constraints
 - represented as formal specs
 - verifying req./HLD/LLD/code

- SSP in early (concept formation) phase:
 - ▷ Initial risk assessment: identify
 - critical areas/hazards/design criteria
 - Preliminary hazard list
 - Audit trail: tracking/evaluating
 - Hazard analysis of previous accidents
- SSP in requirement stage
 - ⊳ SRS (s/w req. specifications)
 - SRS consistent/satisfy safety constraints
 - ▷ Conflicts and tradeoffs?
 - SRS in a formal language
 - able to handle timing and failure

- SSP in High-Level Design (HLD)
 - ▷ Identify safety-critical items
 - based on FTA and ETA
 - ▷ Design for safety: key!
 - isolation/encapsulation
 - protection and security, etc.
 - Use of safety invariants for modules
- SSP in Low-Level Design (LLD)
 - > Safety invariants/etc. preserved
 - ▷ (dynamic) interconnection properties
 - > Same design for safety issues
 - but finer granularity/less flexibility

- SSP in code analysis
 - > Further refinement
 - Preserving safety invariants/properties?
 - Combination of techniques
 - testing/inspection/formal veri., etc.
 - safety-focus: based on FTA&ETA
- SSP in configuration control/maintenance
 - ▷ Change during verification/operation
 - ▷ Change effect analysis:
 - how does it affect safety
 - problem identification and resolution
 - use FTA and ETA with modifications
 - ▷ Importance of separation/isolation
 - ▷ Above ⇒ informed safety management

Perspectives

- State-of-the-Practice:
 - Computer used in safety-critical appl.
 - ▷ S/w Eng.: V&V, SRE, FT, FM
 - Gap between safety goal and QA
- SSE: Augment S/w Eng.
 - ▷ Overall framework: Leveson's SSP
 - Analysis to identify hazard
 - ▷ Design for safety/hazard resolution
 - > Safety constraints and verification
- Link to other topics:
 - ▷ In addition to: V&V, SRE
 - ▶ Important elements: FM and FT
 - ▷ New development: prescriptive specs