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Abstract

In this paper, we characterize usage and problems for
web applications, evaluate their reliability, and exam-
ine the potential for reliability improvement. Based on
the characteristics of web applications and the overall
web environment, we classify web problems and focus
on the subset of source content problems. Using infor-
mation about web accesses, we derive various measure-
ments that can characterize web site workload at differ-
ent levels of granularity and from different perspectives.
These workload measurements, together with failure in-
formation extracted from recorded errors, are used to
evaluate the operational reliability for source contents
at a given web site and the potential for reliability im-
provement. We applied this approach to the web sites
www.seas.smu.edu and www.kde.org. The re-
sults demonstrated the viability and effectiveness of our
approach.

Keywords: World Wide Web (WWW) and Internet,
web applications and web server logs, quality and reli-
ability, reliability modeling, workload measurement.

1 Introduction

With the prevalence of the World Wide Web (WWW,
or simply the web) and people’s reliance on it in society
today, ensuring its satisfactory reliability is becoming
increasingly important. Various techniques exist today
to characterize workload for general software and com-
puter systems, and to measure and assure their reliabil-
ity [9, 12, 21]. However, the web environment presents
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many new challenges [6, 14], and requires adapted or
newly developed techniques based on the characteriza-
tion of the web, its usage, and related problems.

For web applications, various log files are routinely
kept at web servers. In this paper, we extract web us-
age and failure information from these log files to evalu-
ate web software reliability and the potential for reliabil-
ity improvement. This approach has been applied to the
web sites www.seas.smu.edu and www.kde.org
to demonstrate its viability and effectiveness.

The rest of the paper is organized as follows: Sec-
tion 2 analyzes the general characteristics of the web and
its reliability problems. Section 3 examines the contents
of web logs and their use in evaluating web site work-
load and web software reliability. Section 4 presents
our initial results for www.seas.smu.edu, which are
cross-validated by the results for www.kde.org in
Section 5. Conclusions and perspectives are presented
in Section 6.

2 Reliability and the Web

We next examine the general characteristics of the
web and common problems in web applications to set
the stage for us to evaluate web software reliability.

2.1 Defining reliability for web applications
and their components

The reliability for web applications can be defined
as the probability of failure-free web operation comple-
tions. We define web failures as the inability to cor-
rectly obtain or deliver information, such as documents
or computational results, requested by web users. This
definition conforms to the standard definition of failures
being the behavioral deviations from user expectations
[5]. Based on this definition, we can consider the fol-
lowing failure sources:



• Host, network, or browser failures that prevent the
delivery of requested information to web users.
These failures are similar to failures in regular com-
puter systems, network, or software, which can
be analyzed and assured by existing techniques
[9, 12, 21].

• Source content failures that prevent the acquisition
of the requested information by web users because
of problems such as missing or unaccessible files,
trouble with starting JavaScript, etc. These failures
are closely related to the specific web-based ser-
vices that a site provides, and possess various char-
acteristics unique to the web environment [6, 14].

• User errors, such as improper usage, mistyped
URL, etc., may also cause problems, which can be
addressed through user education, better usability
design, etc. These failures are beyond the control
of web service or content providers.

The end-to-end reliability defined earlier, which mea-
sures the probability of failure-free completions of web
operations, includes all the problems listed above in its
reliability evaluation. However, as also noticed above,
many of these problems can be either addressed by ex-
isting approaches or are simply beyond the control and
responsibility of the local web content providers. In ad-
dition, ensuring reliability defined this way would re-
quire concerted quality assurance effort over the whole
Internet by the global community.

On the other hand, web site software problems, or
web source content problems noted above, are a signifi-
cant part of the overall problems for web operations. In
addition, they can generally be addressed locally at the
web site by the content providers. Consequently, we fo-
cus on the web source content failures and the related
web software reliability in this study.

Also worth noting is the differences between web
software reliability we restrict ourselves to and web site
availability. Normal maintenance activities and network
problems may make a web site temporarily unavailable.
However, such problems are generally perceived as less
serious by web users than web software problems, be-
cause the users are more likely to succeed in access-
ing required information after temporary unavailability,
while software problems would persist unless the under-
lying causes are identified and fixed. This fact also par-
tially justifies our focus on web software reliability.

2.2 Measuring web software reliability and
workload

In general, the failure information alone is not ad-
equate to characterize and measure the reliability of a
software system, unless there is a constant workload
[9, 12]. Due to the vastly uneven web traffic observed
in previous studies [1, 15], we need to measure both the
web failures and related workload for reliability anal-
yses. Specific characteristics that make web workload
measurement different from that for traditional software
systems include:

• Massiveness and diversity: Web applications pro-
vide cross-platform universal access to web re-
sources for everyone with an Internet access.
The massive user population, the diverse hard-
ware/software configurations, and the varied usage
patterns need to be reflected in the selected work-
load measures.

• Document and information focus, as compared to
the computational focus for most traditional work-
load. Although some computational capability has
evolved in newer web applications, information
search and retrieval still remain the dominant us-
age for most web users. A fundamental difference
exists between these two workload types.

These characteristics require us to measure actual
web workload to ensure its satisfactory reliability in-
stead of indiscriminately using generic measures suit-
able for traditional computation-intensive workload.
Due to the nature of uneven web workload, only usage-
dependent workload measures among the traditional
ones, such as CPU execution time runs, and transactions,
need to be considered for reliability evaluation [9, 12].
However, the user focus and substantial amount of idle
time during browsing sessions make any variation of
execution time unsuitable for web workload measure-
ment. Similarly, the dominance of non-computational
tasks also makes computational task oriented transac-
tions unsuitable for web workload measurement. In-
stead, other workload measures, such as those we derive
in Section 3, may be more suitable for characterizing
workload at web sites.

2.3 Basics of reliability analysis and modeling

Both the failure information and the related workload
measurements provide us with data input to various soft-
ware reliability models [9, 12, 18]. The output of these
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129.119.4.17 - - [16/Aug/1999:00:00:11 -0500] "GET /img/XredSeal.gif HTTP/1.1" 301
328 "http://www.seas.smu.edu/" "Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)"
129.119.4.17 - - [16/Aug/1999:00:00:11 -0500] "GET /img/ecom.gif HTTP/1.1" 304 -
"http://www.seas.smu.edu/" "Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)".

Table 1. Sample entries in an access log

[Mon Aug 16 13:17:24 1999] [error] [client 207.136.6.6] File does not exist:
/users/seasadm/webmastr/htdocs/library/images/gifs/homepage/yellowgradlayers .gif
[Mon Aug 16 13:17:37 1999] [info] [client 199.100.49.104] Fixed spelling:
/img/XredSeal.gif to /img/xredSeal.gif from http://www.seas.smu.edu/

Table 2. Sample entries in an error log

models can help us evaluate the web software reliability
and the potential for reliability improvement.

Two basic types of software reliability models are:
input domain reliability models (IDRMs) and time
domain software reliability growth models (SRGMs).
IDRMs can provide a snapshot of the web site’s current
reliability. For example, if a total number of f failures
are observed for n workload units, the estimated relia-
bility R according to the Nelson model [13], one of the
most widely used IDRMs, can be obtained as:

R =
n − f

n
= 1 −

f

n
= 1 − r

Where r is the failure rate, which is also often used to
characterize reliability. When usage time ti is available
for each workload unit i, the summary reliability mea-
sure, mean-time-between-failures (MTBF), can be cal-
culated as:

MTBF =
1

f

∑

i

ti

When the usage time ti is not available, we can use the
number of workload units as the rough time measure. In
this case,

MTBF =
n

f

If discovered defects are fixed over the observation
period, the defect fixing effect on reliability (or reliabil-
ity growth due to defect removal) can be analyzed by us-
ing various software reliability growth models (SRGMs)
[9, 12]. For example, in the widely used Goel-Okumoto
model [4], the failure arrival process is assumed to be
a non-homogeneous Poisson process. The expected cu-
mulative failures, m(t), over time t is given by the for-
mula:

m(t) = N(1 − e−bt)

where the model constants N (total number of defects in
the system) and b (model curvature) need to be estimated
from the observation data. SRGMs can also be used to
assess the potential for reliability improvement.

3 Analyzing Web Logs for Reliability
Evaluation

Monitoring web usage and keeping various logs are
necessary to keep a web site operational. Two types of
log files are commonly used by web servers: Individ-
ual web accesses, or hits, are recorded in access logs,
with sample entries given in Table 1; related problems
are recorded in error logs, with sample entries given in
Table 2. Analyzing information stored in such logs can
help us evaluate web site workload and web software
reliability, as discussed below.

3.1 Error log analysis

Error logs typically include details about the prob-
lems encountered. The format is simple: a time-stamp
followed by the error or warning message, such as in
Table 2.

Common problems or error types are listed in Table 3.
Notice that most of these errors conform closely to the
source content failures we defined in Section 2. There-
fore, they can be used in our web software reliability
evaluation.

Questions about error occurrences and distribution
can be answered directly by analyzing error logs. How-
ever, as discussed in Section 2, evaluation of web soft-
ware reliability also needs the measurement data for web
usage or workload. The web usage information and the
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type description
A permission denied
B no such file or directory
C stale NFS file handle
D client denied by server configuration
E file does not exist
F invalid method in request
G invalid URL in request connection
H mod mime magic
I request failed
J script not found or unable to start
K connection reset by peer

Table 3. Error types

related workload measurements can be extracted from
web server access logs, as described below.

3.2 Analysis of access log contents

A “hit” is registered in an access log if a file cor-
responding to an HTML page, a document, or other
web content is explicitly requested, or if some embed-
ded content, such as graphics or a Java class within an
HTML page, is implicitly requested or activated.

Information recorded in access logs typically in-
cludes: the requesting computer, user name and identity
information for authentication, date and time of the re-
quest, name and size of the requested file, HTTP status
code, referral page, and client name. Specific informa-
tion useful to our workload analysis recorded in access
logs includes:

• The reverse-DNS hostname or IP number of the
machine making the request.

• Date and time that the transfer took place.

• Total number of bytes transferred.

They are recorded as the 1st, 4th, and 7th field respec-
tively of each hit entry in the access log, as illustrated in
Table 1. If the value for any field is not available, a “−”
is put in its place.

3.3 Defining workload measures and extract-
ing them from access logs

As mentioned in Section 2, various software reliabil-
ity models relate observed failures to usage time for re-
liability evaluation. From the perspective of web service

providers, the usage time for web applications is the ac-
tual time spent by every user at the local web site. How-
ever, the exact time is difficult to obtain and may involve
prohibitive cost or overhead associated with monitoring
and recording dynamic behavior by individual web users
[15]. One additional complication is the situation where
a user opens a web page and continues with other tasks
unrelated to the page just accessed. In this situation, the
large gap between successive hits is not a reflection of
the actual web usage time by this user. To approximate
the usage time, we can use various workload measures
considered below.

The most obvious workload measure is to count the
number of hits, because 1) each hit represents a specific
activity associated with web usage, and 2) each entry in
an access log corresponds to a single hit, thus it can be
extracted easily. In fact, spent using the web site this
has already been done for statistical web testing and re-
liability assurance [6], which also demonstrated that hit
count is a viable candidate for the evaluation of web site
workload and web software reliability.

Overall hit count defined above can be misleading if
the workload represented by individual hits shows high
variability. Consequently, we can choose the number of
bytes transferred, or byte count, as the workload mea-
sure of finer granularity, which can be easily obtained
by counting the number of bytes transferred for each hit
recorded in access logs.

User count is another alternative workload measure
meaningful to the organizations that maintain the web
sites and support various services at the user level. When
calculating the number of users for each day, we treat
each unique IP address as one user. So, no matter how
many hits were made from the same computer, they are
considered to be made by the same user. This measure
gives us a rough picture of the overall workload handled
by the web site.

One of the drawbacks of user count is its coarse gran-
ularity, which can be refined by counting the number of
user sessions. In this case, along with the IP address,
access time can be used to calculate user sessions: If
there is a significant gap between successive hits from
the same IP address, we count the later one as a new ses-
sion. In practice, the gap size can be adjusted to better
reflect appropriate session identification for the specific
types of web applications.

The number of user sessions per day may be a better
measure of overall workload than the number of users,
because big access gaps are typically associated with
changes of users or non-web related activities by the
same user. Each user who accesses the same web site
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Error type A B C D E F G H I J K Total
Number of errors 2079 14 4 2 28631 0 1 1 1 27 0 30760

Table 4. Summary of total recorded errors by type for SMU/SEAS

from the same computer over successive intervals will
be counted by user sessions, as long as such a gap exists
in between. Even for a single user, a significant access
gap is more likely to be associated with different usage
patterns than within a single time burst. Therefore, by
using user sessions, we can count the users’ active con-
tribution to the overall web site workload more accu-
rately.

To summarize, the web workload measures at differ-
ent levels of granularity and from different perspectives
that we can extract from web server access logs include:

• Number of hits, or hit count.

• Number of bytes transferred, or byte count.

• Number of users, or user count.

• Number of user sessions, or session count.

In our previous study of statistical web testing and
reliability analysis [6], we implemented utility programs
in Perl to count the number of errors, number of hits, and
frequently used navigation patterns. We extended these
utility programs here to extract and analyze the work-
load data defined above. We also used a commercial
tool, S-PLUS1, and related utility programs to perform
statistical analysis on the collected data, fit reliability
models, and present results in graphical forms.

4 Initial Results and Discussions

We next present our initial results for
www.seas.smu.edu, the official web site for
the School of Engineering and Applied Science at
Southern Methodist University (SMU/SEAS). This web
site utilizes Apache Web Server [2], a popular choice
among many web hosts, and shares many common
characteristics of web sites for educational institutions.
These features make our results and observations
meaningful to many application environments. Server
log data covering 26 consecutive days in 1999 were
used. Limitations due to the use of this web site and the
specific data are addressed in Section 5.

1S-PLUS is a trademark of Insightful, Inc.

4.1 Error distribution and trend analysis

Table 4 gives the summary of different types of er-
rors for SMU/SEAS. The error types and their brief de-
scriptions were given in Table 3. Among the different
error types, the most dominant ones are type A errors
(“permission denied”) and type E errors (“file does not
exist”). These two types together account for almost all
(99.9%) of the recorded errors.

Type A errors, accounting for 6.8% of the total
recorded errors, involve improper access authorization
or problems with the authentication process. These er-
rors are more closely related to security problems in-
stead of reliability problems we focus on in this paper.
Further analyses of them may involve the complicated
authentication process. In addition, type A errors also
account for much less of a share of the total recorded
errors as compared to type E errors. Therefore, we de-
cided not to use these errors in our web software relia-
bility analysis here.

Type E errors usually represent bad links. They
are by far the most common type of problems in web
usage, accounting for 93.1% of the total recorded
errors. This is in agreement with survey results from
1994∼1998 by the Graphics, Visualization, and Us-
ability Center of Georgia Institute of Technology (see
http://www.gvu.gatech.edu/user surveys/).
The surveys found that broken link is the problem most
frequently cited by web users, next only to network
speed problem. Therefore, type E error is the most ob-
served web content problem for the general population
of web users. Further analysis can be performed to
examine the trend of these failures, and to provide an
objective assessment of the web software reliability.

We performed a preliminary analysis of the origina-
tors of these bad links [10] and discovered that the ma-
jority of them are from internal links, including mostly
URLs embedded in some web pages and sometimes
from pages used as start-ups at the same web site. Only a
small percentage of these errors are from other web sites
(4.3%), web robots (4.4%), or other external sources,
which are beyond the control of the local site content
providers, administrators, or maintainers. Therefore, the
identification and correction of these problems represent
realistic opportunities for improved web software relia-
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Figure 1. Error profile over time for
SMU/SEAS
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Figure 2. Daily bytes transferred over time
for SMU/SEAS

bility based on local actions.

Figure 1 plots the number of type E errors over time
under normal operations. These daily errors vary con-
siderably. However, the number of problems encoun-
tered per day is closely related to the actual usage in-
tensity. As mentioned in Section 2, a workload profile
with considerable variability, such as the web traffic in
general [1, 15], is a clear indication that measuring fail-
ures alone over calendar time is not suitable for reliabil-
ity analysis. Various usage or workload measurements,
such as the ones defined in Section 3, are needed for web
software reliability evaluation.

•
•

•
•

•

•
•

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

day

da
ily

 w
or

kl
oa

d 
(#

hi
ts

)

0 5 10 15 20 25

0
10

00
0

20
00

0
30

00
0

40
00

0

Figure 3. Daily hits over time for
SMU/SEAS
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or users (bottom curve) over time for
SMU/SEAS

4.2 Workload measurement results

The workload measurement results are plotted in Fig-
ure 2 for daily bytes transferred, in Figure 3 for daily
hits, and in Figure 4 for daily sessions (top curve) and
daily users (bottom curve). We used the standard two-
hour gap [11] to identify user sessions here. On the av-
erage, each day is associated with 301.6 Mbytes, 29,345
hits, 2,338 sessions, and 2,120 users; each user is associ-
ated with 13.8 hits; each user session is associated with
11.6 hits; and each hit is associated with 10,279 bytes.
No matter which workload measure is used, the daily
workload shows several apparent characteristics, as fol-
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Figure 6. Hourly bytes transferred for SMU/SEAS

lows:

• Uneven distribution and variability: The distribu-
tion is highly uneven and varies from day-to-day,
as represented by the peaks and valleys in these
workload plots, which conforms to previously ob-
served traffic patterns [1, 15]. Among the four
workload measures, daily bytes and daily hits show
larger variability in relative magnitudes than daily
users or daily sessions. This result indicates that
although the number of users or user sessions may
remain relatively stable, some users may use the
web much more intensively than others, resulting
in larger variations in detailed web site workload
measurements over time.

• A periodic pattern that synchronize with error pro-
file, which is characterized by weekdays normally

associated with heavier workload than during the
weekends. This pattern seems to conform to the
self-similar web traffic [3]. In addition, this pe-
riodic pattern are correlated or synchronized with
daily error profile in Figure 1. This fact indi-
cates that these workload measures are viable al-
ternatives for web software reliability evaluation,
because of the direct relation between usage and
possible failures for the web site’s source contents
demonstrated in such synchronized patterns.

• A long term stability for the overall trend, which
can be cross-validated by examining the trend over
a longer period instead of for just 26 days, such as
we plotted in Figure 5 for the number of daily users
over a year. The other workload measures traced
over the whole year also showed the same long-
term stability. This is probably due to the stable
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enrollment for SMU/SEAS and web site stability
where no major changes were made to our web-
based services over the observation period.

Of the four workload measures, hits, users, and ses-
sions can be extracted from access logs easily and con-
sistently. However, byte counting was somewhat prob-
lematic, because “byte transferred” field was missing not
only for the error entries but also for many other entries.
Further investigation revealed that most of these missing
entries were associated with files or graphics already in
the users cache (“file not modified”, therefore no need
to resend or reload). Since the total number of entries
with missing bytes information represented about 15%
of the total number of entries (hits), we simply used the
rest to calculate the number of bytes transferred in this
paper. The impact of this counting scheme is discussed
in connection to future work in Section 6.

4.3 Hourly workload measurement results

Workload measurements associated with periods
shorter than calendar days, such as by the hour or by
some short bursts, can also be used in reliability analy-
sis. With time-stamped individual hits and related infor-
mation available in the access log, such measurements
can be easily obtained.

Figure 6 plots hourly bytes transferred for the 26 day
period. We can see numerous peaks and valleys asso-
ciated with different hours and days. Huge workload
differences exist between some peaks and valleys, simi-
lar to other Internet traffic [1, 15]. We also examined the
other hourly workload measures, but they do not show
such big differences between their peaks and valleys, al-
though the same pattern remains.

There is a remarkable consistence in the overall
hourly patterns from day to day. Figure 7 plots the av-
erage hourly bytes transferred for different hours of a
day, averaging over the 26 day period. Other plots we
produced for average hourly workload also show similar
patterns but with slightly less variability. This pattern
looks remarkably similar to previously observed pat-
terns [1], which indicates that daily web workload pro-
file over different hours has remained fairly stable over
the years. Knowing the normal web site workload pat-
terns over the hours of a day can help us schedule sys-
tem maintenance tasks to minimize possible disturbance
to normal web-base services.

As for reliability analysis, data with less variabil-
ity, usually through data grouping or clustering, are
generally preferable, because they typically produce
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Figure 7. Average hourly bytes transferred
in a day for SMU/SEAS

more stable models that fit the observations better and
provide better reliability assessments and predictions
[16, 17, 20]. In our case, daily data have much less vari-
ability, as shown by comparing Figure 6 to Figure 2, yet
give us enough data points (26) to be used in statistical
analyses and model fitting. Consequently, we only use
daily data in subsequent reliability analyses.

4.4 Analysis of operational reliability

When we combine the measurement results for the
web failures, in this case type E errors extracted from
the error log, and workload measured by the number of
users, sessions, hits, and bytes transferred, we can per-
form analyses to evaluate web software reliability.

As observed earlier, the peaks and valleys in er-
rors represented in Figure 1 generally coincide with the
peaks and valleys in workload, such as in Figures 2, 3,
and 4. This close relationship between usage time and
failure count can be graphically examined as in Figure 8,
plotting cumulative errors vs. cumulative bytes trans-
ferred over the observation period. An essentially linear
relation can be detected between the two. Similar obser-
vations can be obtained if we plot cumulative errors vs.
cumulative hits, users, or sessions.

This relationship can also be characterized by the
daily failure rate, as defined by the number of errors di-
vided by the workload measured by bytes transferred,
hits, users, or sessions for each day. These daily failure
rates also characterize web software reliability, and can
be interpreted as applying the Nelson model [13] men-
tioned in Section 2 to daily snapshots. Table 5 gives the
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transferred for SMU/SEAS

range (min to max), the mean, and the standard deviation
(std.dev), for each daily error rates defined above. Be-
cause these rates are defined for different workload mea-
surement units and have different magnitude, we use the
relative standard error, or rse, defined as: rse = std.dev
/ mean, to compare their relative spread in Table 5. We
also included the daily error count for comparison. All
these daily error rates fall into tighter spread than daily
error count, which indicates that they provide more con-
sistent and stable reliability estimates than daily error
count.

Since individual web failures are directly associated
with individual hits, we can use the Nelson model [13]
described in Section 2 to evaluate the overall web soft-
ware reliability using failures and hits for the complete
26 days. This gives us the site software reliability of
R = 0.962, or 96.2% of the individual web accesses
will be successful. This model also give us an MTBF =
26.6 hits, or averaging one error for every 26.6 hits.

Modeling with other workload measures is also pos-
sible. For example, the above MTBF can be re-
calculated for other workload units, giving us an MTBF
= 273,927 bytes, an MTBF = 1.92 users, or an MTBF
= 2.12 sessions. That is, this site can expect, on the av-
erage, to have a problem for every 273,927 bytes trans-
ferred, for every 1.92 users, or for 2.12 sessions. The
web software reliability R in terms of these workload
measures can also be calculated by the Nelson model.
However, result interpretation can be problematic, be-
cause web failures may only be roughly associated with
these workload measures. For example, because of the
missing byte transferred information in the access logs

for failed requests, the failures can only be roughly
placed in the sequence of bytes transferred, resulting
in imprecise reliability assessments and predictions. On
the other hand, individual web failures may be roughly
associated with certain users or user sessions through the
particular hits by the users or within the sessions. In this
case, each user or session may be associated with mul-
tiple failures, and appropriate adjustments to modeling
results might be called for. For example, it might be
more appropriate to separate failure-free sessions from
sessions with failures, instead of comparing the number
of failures in a session.

4.5 Evaluating potential reliability improve-
ment

Under the idealized environment, the fault(s) that
caused each observed failure can be immediately iden-
tified and removed, resulting in no duplicate observa-
tions of identical failures. This scenario represents the
upper limit for the potential reliability improvement if
we attempt to fix operational problems on-line or if we
attempt to test the system and fix problems under sim-
ulated customer operational environment. This upper
bound on reliability growth may not be attainable un-
der many circumstances because of the large number of
transient faults that usually take place whose origins are
usually very difficult to be identified and removed be-
cause of their dependency on the context. Nevertheless,
this upper limit gives us an idea about the potential reli-
ability growth. Should quantitative information become
available about the faults that are hard to fix, it can be
used to fine tune the above limit to provide more accu-
rate estimation of reliability growth potential.

This limit on potential reliability improvement can be
measured by the reliability change (or growth) through
the operational duration or testing process where such
defect fixing could take place. Under the web applica-
tion environment, each observed failure corresponds to a
recorded type E error in the error log, and the idealized
defect fixing would imply no more observation of any
duplicate type E errors. In other words, failure arrivals
under this hypothetical environment would resemble the
sequence of unique type E errors extracted from the er-
ror log, which can be calculated by counting each type
E error only once at its first appearance but not subse-
quently.

In general, reliability growth can be visualized by
the gradual leveling-off of the cumulative failure arrival
curve, because the flatter the part of the curve, the more
time it takes to observe the next failure. To visualize
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error rate min max mean std.dev rse
errors/bytes 2.35×10−6 5.30×10−6 3.83×10−6 9.33×10−7 0.244
errors/hits 0.0287 0.0466 0.0379 0.00480 0.126
errors/sessions 0.269 0.595 0.463 0.0834 0.180
errors/users 0.304 0.656 0.5103 0.0859 0.168
errors/day 501 1582 1101 312 0.283

Table 5. Daily error rate (or failure rate) for SMU/SEAS
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Figure 9. Reliability growth comparison for different workload measures for SMU/SEAS

this, we plotted in Figure 9 cumulative unique failures
versus different workload measurements we calculated
above. Relative scale is used to better compare the over-
all reliability growth trends. The individual data points
in the middle depict the failure arrivals indexed by cu-
mulative hits. The (top) solid line depicts failure arrivals
indexed by the cumulative bytes transferred. The (bot-
tom) dashed line depicts failure arrivals indexed by the
cumulative number of users. The user session measure-
ment resulted in almost identical curve shape as that for
the number of users, thus was omitted to keep the graph
clean. As we can see from Figure 9, there is an observ-
able effect of reliability growth for this data, with the
tail-end flatter than the beginning for all three curves.

Quantitative evaluation of reliability growth can
be provided by software reliability growth models
(SRGMs), which commonly assume instantaneous de-
fect fixing [9, 12]. In this paper, we use a single mea-
sure, the purification level ρ [19] to capture this reliabil-

ity change:

ρ =
λ0 − λT

λ0

= 1 −

λT

λ0

where λ0 and λT are the initial and final failure rates, re-
spectively, estimated by a fitted SRGM. Complete elim-
ination of all potential defects would result in ρ = 1, and
no defect fixing would result in ρ = 0. Normal reliabil-
ity growth is associated with ρ values ranging between
these two extremes, with larger ρ values associated with
more reliability growth. (1 − ρ) gives us the ratio be-
tween λT and λ0, or the final failure rate as a percentage
of the initial failure rate.

We fitted various SRGMs to relate cumulative unique
failures to cumulative workload measurements. Fig-
ure 10 is an example of such a fitted model, with cumula-
tive bytes transferred as the usage time or workload mea-
surement. The widely used Goel-Okumoto (GO) model
[4] introduced in Section 2 was used here to evaluate the
potential reliability improvement. The results include:
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time/workload model parameters & estimates reliability
measurement N b SSQ λ0 λT MTBF growth ρ

bytes 3674 1.76×10−10 54960 6.45 ×10−7 1.63 ×10−7 6.14 ×107 0.748
hits 4213 1.38×10−6 60880 0.00583 0.00203 493 0.632

sessions 4750 1.42×10−5 66553 0.0675 0.0284 35 0.579
users 4691 1.60×10−5 65063 0.0752 0.0311 32 0.587

Table 6. Reliability modeling results for SMU/SEAS
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Modeling Result Summary: 
==============

 m(t) = N (1 - exp(-b*t)) 
	 N= 3674 

	 b= 1.756e-10 
==============

 failure rate: 1.628e-07 
MTBF: 6143408

SSQ(residuals): 54960

Figure 10. A sample SRGM fitted to
SMU/SEAS data

• Fitted model parameters N and b that link expected
failure observations m(t) to usage time t in the for-
mula: m(t) = N(1 − e−bt).

• Model goodness-of-fit measure, sum of residual
squares, or SSQ.

• Various estimates that can be derived from the fitted
model: initial failure rate (λ0), failure rate (λT ) and
MTBF at the end of testing, and purification level
(ρ).

Table 6 summarizes these modeling results. The ρ

values based on models using different workload mea-
surements indicate that potential reliability improve-
ment ranges from 57.9% to 74.8% in purification lev-
els. In other words, effective web testing and defect
fixing equivalent to 26 days of operation could have re-
duced the failure rate to between slightly less than half
(1−57.9%) and about one quarter (1−74.8%) of the ini-
tial failure rate. Other SRGMs we tried also yield similar
results: A significant reliability improvement potential
exists if we can capture the workload and usage patterns

in log files and use them to guide software testing and
defect fixing.

5 Cross-Validation

We next identify the limitations of our initial study
presented above and describe a new study to address
these limitations and to cross-validate the above results.

5.1 Addressing the limitations of our initial
study

Similar to most previously studies that overwhelm-
ingly focus on academic sites [15], our results above
were obtained for an academic site. Despite the fac-
tors that contribute to the general validity of our results
described at the beginning of Section 4, the most seri-
ous limitation of our initial study is that the SMU/SEAS
web site may not be a good representative for many
non-academic web sites. For example, most of the
SMU/SEAS web pages are static ones, with the HTML
documents and embedded graphics dominating other
types of pages [8], and the web site operates under
fairly light traffic. In e-commerce and other applica-
tions, workload types may be more diverse, with dy-
namic pages and context-sensitive contents play a much
more important role, and traffic volume can be signif-
icantly larger [15]. A related limitation of our initial
study is the two-hour gap we used to identify user ses-
sions, which may be suitable for academic sites but not
others. For example, most e-commerce applications use
15-30 minutes to time out sessions, and the previously
observed average session time-outs are also significantly
shorter than two hours [15].

Another limitation is the period covered in our data:
26 days in 1999. Two appealing alternatives are: 1)
using more recent data, and 2) using data covering a
longer period of time. However, drastic changes or re-
structuring of the web site will overshadow the normal
trend of observed failures over time, and data covering
such periods should be avoided for web software relia-

11



bility analyses, unless one is specifically addressing the
change impact on reliability. The SMU/SEAS web site
was overhauled shortly after the period covered in this
study, and the ripple effect of the changes lasted a long
period. In the meantime, we obtained more recent data
from the KDE project to cross-validate our results for
SMU/SEAS. On the other hand, longer term data may
not be suitable for some of the analyses we performed.
For example, the reliability growth analysis assumes that
none or few new faults are injected, which can not be
true for the dynamic web environment for an extended
period of time. Even for the analysis of operational reli-
ability, a stable web site is assumed. Consequently, our
use of longer term data is limited to using the one year
data from 1999-2000 for the SMU/SEAS web site for
only the analyses that are meaningful, such as overall
workload trend over longer period.

To overcome these limitations, we obtained and an-
alyzed recent web logs from the KDE project and used
different session cut-off values to cross-validate our ini-
tial results, as described below.

5.2 KDE web site and logs

For our cross-validation study, we initially planned
to analyze some public domain web logs, such as from
the Internet Traffic Archive at ita.ee.lbl.gov
or the W3C Web Characterization Repository at
repository.cs.vt.edu. However, we discovered
that most of the information and log files therein are tai-
lored towards overall Internet and WWW traffic, and are
typically older than the SMU/SEAS data we used.

Fortunately, through our recent work with open
source projects [7], we learned about the possibility
of using measurement data and web logs from open
source projects, and obtained web logs from the KDE
project web site at www.kde.org, with the help of
KDE project personnel. The brief description about this
project from the KDE web site is given below:

• KDE is a network transparent contemporary desk-
top environment for UNIX workstations.

• The KDE project is a large open group of devel-
opers consisting of several hundred software en-
gineers from all over the world committed to free
software development.

Besides providing various information about the
KDE project, the KDE web site also supports online
download of released documentation and software, and
provides online development facilities (including bug

database, source reference, WebCVS, etc.). The over-
all user population and traffic volume are significantly
large than the SMU/SEAS web site. Changes are con-
tinuously committed to the web site in order to provide
the developers and users with the most up-to-date infor-
mation. These characteristics that differentiate the KDE
web site from the SMU/SEAS web site make it a good
choice for our validation study. In addition, this web site
also uses Apache Web Server [2], which makes our data
extraction and analysis easy due to the same data format
used.

For each day, the KDE web server generates a log
file that contains the access information starting from
around 5:05am of the previous day until 5:05am of the
current day. Only access logs are used, but not the error
logs. However, from the HTTP response code, we can
extract the general error information. For example, type
E (missing file) error in the error logs is equivalent to
access log entries with a response code 404.

To protect the identity and privacy of individual users,
the available log data were transformed by KDE person-
nel using an 1-to-1 mapping for the original IP addresses
to make it impossible for us to identify individual users
or computers. After some initial problems with data
recording and transformation, we obtained consistent
data covering over two months in 2003. However, for
our analysis, we would like to avoid drastic web changes
associated with product releases (which are quite fre-
quent for open source products, such as KDE), web re-
structuring, and other major events. Therefore, we se-
lected data that fit into an one-month window (31 days)
for our subsequent analyses.

5.3 Results for KDE web logs

The access logs for the 31 days recorded more than
14 million hits, of which 793,665 resulted in errors.
785,211 hits resulted in response code 404 (file-not-
found), which accounted for 98.9% of all the errors.
The next most reported error type was of response code
408, or “request timed out”, which accounted for 6225
or 0.78% of all the errors. This dominant share of
404 errors, which is equivalent to type E errors for
SMU/SEAS, justifies our focus on this type of errors in
our reliability evaluation.

The error profile and three workload profiles using
the workload measurements, bytes, hits, and users, are
presented in Figure 11. Two different variations of ses-
sion count were used in dealing with the KDE data: the
same two-hour gap cut-off we used for the SMU/SEAS
web site previously (labeled s1), and the 15 minutes cut-
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error rate min max mean std.dev rse
errors/bytes 3.608×10−6 1.246×10−5 7.210×10−6 1.81×10−6 0.251
errors/hits 0.04178 0.09091 0.05519 0.0117 0.211
errors/s1s 0.6335 1.4450 0.8648 0.189 0.219
errors/s2s 0.1665 0.4041 0.2403 0.0554 0.231
errors/users 0.7428 1.7060 1.0180 0.228 0.223
errors/day 15510 44160 25330 6833 0.270

Table 7. Daily error rate (or failure rate) for KDE

off more appropriate for dynamic pages (labeled s2).
The session profiles are plotted in Figure 12.

The overall traffic at this web site is significantly
heavier than that for SMU/SEAS, with a daily average
of 3,563 Mbytes, 455,005 hits, 24,656 users, 29,029
s1 sessions, and 104,490 s2 sessions. However, all
the observations about workload and error distribution,
trends, and patterns for SMU/SEAS remain valid here,
except for the long term stability which was only par-
tially validated by the data covering slightly more than
two months due to our lack of longer term data for KDE.
In fact, the visual patterns of Figure 11 and Figure 12
look remarkably similar to those of Figures 1 through
4. Although the relative differences for KDE tends to
be smaller than that for SMU/SEAS, likely due to the
heavier traffic by a larger user population.

As expected, the hourly workload measurement re-
sults for the KDE project are similar to that for
SMU/SEAS. However, the workload distribution over
different hours of the day, plotted in Figure 13, shows
some differences to Figure 7 for SMU/SEAS, while
maintaining similar patterns. The peak seems to be
shifted right, to later hours, and the low activity hours
are relatively short. These differences can probably be
attributed to the nature of open source projects, where
most of the developers work on the projects on their
spare time, typically in late afternoons and evenings.
The hour with the lowest workload is also the hour they
scheduled to cut off the daily access logs and to save the
information.

Table 7 gives the evaluation results of operational re-
liability. Expectedly, the same patterns hold, i.e., all the
daily failure rates fall into tighter bands than that for the
daily errors, to give consistent and stable assessments
of the operational reliability of this web site’s contents.
The overall reliability values are also roughly the same
as that for SMU/SEAS. For example, on average, 5.76%
of the hits would result in 404 errors, or the web site was
94.2% reliable as compared to 96.2% for SMU/SEAS.

We also repeated the assessment of reliability growth
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Figure 13. Average hourly bytes trans-
ferred in a day for KDE

potential for the KDE web site. However, when we ex-
tracted the unique failures (unique 404 errors), we no-
ticed an anomaly at the 24th day, which was associated
with more than 10 times the maximal daily unique er-
rors for all the previous days. Further investigation re-
vealed that this is related to a planned beta release of
the KDE product, when the web contents were drasti-
cally changed and many new faults were injected. Since
our reliability growth evaluation is for stable situations
where few or none new faults are injected, as is the as-
sumption for all the software reliability growth models
[9, 12], we restricted our data to the first 22 days in this
analysis.

Figure 14 plots the reliability growth evaluation we
carried out for the KDE data. Among the five workload
measures we used, bytes, hits, users, s1 and s2 sessions,
all produced almost identical results in the reliability
growth visualization, when we plotted relative cumula-
tive unique errors against relative cumulative workload,
similar to what we did in Figure 9. The comparative
visualization is omitted here because all the relative reli-
ability growth curves would closely resemble the actual
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Modeling Result Summary: 
==============

 m(t) = N (1 - exp(-b*t)) 
	 N= 5228 

	 b= 2.745e-11 
==============

 failure rate: 1.847e-08 
MTBF: 54130063 

SSQ(residuals): 209002

Figure 14. A sample SRGM fitted to KDE
data

curve represented by the actual data points in Figure 14.
A visual inspection of Figure 14 also revealed more de-
grees of reliability growth, or more bending of the data
trend and fitted curve, than that in Figures 9 and 10. Re-
liability growth potential as captured by ρ for the KDE
web site ranged from 86.7% to 88.9% (with the model
in Figure 14 gave us ρ = 87.1%). In other words, effec-
tive web testing and defect fixing equivalent to 22 days
of operation could have reduced the failure rate to about
11% to 13% (calculated by 1 − ρ) of the initial failure
rate; or, equivalently, almost all the original problems
could have been fixed.

6 Conclusions and Perspectives

By analyzing the unique problems and challenges
for the web environment, we have developed an ap-
proach for web software reliability evaluation based on
information extracted from existing web server logs.
This approach has been applied to study the web sites
www.seas.smu.edu for the School of Engineering
and Applied Science at Southern Methodist University
(SMU/SEAS) and www.kde.org for the KDE project.
Our key findings are summarized below:

• Measure derivation and data extraction: Specific
web software problems related to missing files
and four workload measures, bytes transferred, hit
count, number of users, and number of sessions,
were derived in this paper for web software relia-
bility evaluation. Detailed failure data can be ex-
tracted from error logs. When such logs are not

available, rough failure data can be extracted from
access logs. Hit count, byte count, and user count
can be easily extracted from access logs, due to
their direct correspondence to access log entries
and the embedded data fields “bytes transferred”
and “IP address”. Session count computation may
involve history information for individual users or
unique IP addresses, but properly identified user
sessions with appropriate time-out values can re-
flect web usage better than simply counting the
users.

• Assessing the operational reliability for web soft-
ware: When used with failure data to estimate fail-
ure rate or reliability, all four workload measures
proposed in this paper produced more consistent
and stable reliability estimates than using daily er-
rors alone. They offer reliability assessments from
different perspectives, and each may be suitable for
specific situations. For example, byte count might
be more suitable for traffic measurement and re-
lated reliability interpretations; hit count might be
more meaningful to web users as they browse in-
dividual pages; while number of users or sessions
might be more suitable for high level web site reli-
ability characterization.

• Assessing the potential for reliability improvement:
Also demonstrated in both case studies is the signif-
icant potential for reliability improvement if defect
can be fixed under a stable environment, leading
to reliability growth ranging from 58% to 89% in
purification levels within a month of such improve-
ment actions.

• Some generalization beyond our two case stud-
ies: Many of the results we obtained and patterns
we observed concerning workload measurements
for the SMU/SEA and the KDE web sites are re-
markably similar to that for other Internet traffic
[1, 3, 15], which indicates that web traffic char-
acteristics have remained fairly stable for almost a
decade. Although re-confirming these existing re-
sults and patterns is not our intention or our focus,
this confirmation lends further validity to our pri-
mary purpose of using these measurements as part
of the data input to evaluate web software reliabil-
ity.

To summarize, our results demonstrated that work-
load measures proposed in this paper can be extracted
from access logs to capture the overall workload for
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these web sites at different levels of granularity and from
different perspectives. When used in conjunction with
failure measurements, they can provide an objective and
stable evaluation of the operational reliability for these
web sites’ contents. We also showed that a potentially
significant reliability gain could be achieved under ef-
fective usage-based testing and defect fixing. These re-
sults demonstrated the viability and effectiveness of our
strategy.

There are also some open issues we plan to address
in future studies, including:

• The impact of web site changes and related fault in-
jections: Our reliability analyses performed in this
paper assumed the stability of the web sites under
study, and our evaluation of reliability growth po-
tential additionally assumed that none or few new
faults were injected. Therefore, a direct general-
ization of this study is to study the impact of web
changes and injection of new faults on web soft-
ware reliability.

• Risk identification for reliability improvement: The
error distribution is highly uneven, as shown in this
paper and demonstrated in further studies we per-
formed to examine the error distributions across
error types, originators, error sources, page types,
etc. [8, 10]. These uneven distributions point out
the importance of applying risk identification tech-
niques to identify problematic areas in the future
for focused web software reliability improvement.

• Better ways to count bytes transferred: Byte count-
ing in this paper ignored about 15% of access log
entries with missing information for their “byte
transferred” field, which typically correspond to er-
ror entries and cached web contents. Treating them
as 0’s is convenient but runs contrary to the general
practice in software reliability engineering [9, 12],
where all usage time or activities should be counted
regardless of whether the specific usage resulted in
successful completions or failures. This fact points
to the need for further investigation and possible
alternative data treatment when we use bytes trans-
ferred for reliability analyses.

In addition, we also plan to identify better existing
tools, develop new tools and utility programs, and inte-
grate them to provide better implementation support for
our strategy. All these efforts should lead us to a more
practical and effective approach to achieve and maintain
high reliability for web applications.
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