Software Reliability and Safety CSE 8317 — Fall 2006

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.06f

SRE.3: Reliability Models

- Reliability functions and definitions
- Software Reliability Growth Models
- Combinatorial and Other Models
- Model Assumptions/Limitations/Usage

Reliability Models

- Reliability modeling
 - Reliability-fault relations
 - ▷ Exposure assumptions
 - ▷ Lyu book: Chapter 3; Tian/AIC paper
- Time domain SRGMs
 - Reliability-fault relation over time
 - Stochastic process for failure arrivals
 - Reliability growth due to fault removal
- Combinatorial & other models
 - Reliability-fault relation over input
 - ▷ Fault seeding (FS) models
 - ▷ Input domain (ID) models
 - Cleanroom and coverage-based models

Develop and Use Models

- 1. Preparation:
 - > study failure data and environment
 - choose reliability model(s)
 - (reliability expressed as math functions)
 - ▷ influence of past experience
- 2. Modeling (function with parameters):
 - ▷ estimate model parameters
 - obtain fitted model
 - goodness-of-fit test
 - ▷ obtain performance measures
- 3. Followup and decision making:(assessment/prediction/control aspects)

Environment and Choice of Models

- Environment and data
 - ▷ Modeling goals under the environment
 - ▷ Environmental constraints:
 - project/process environment
 - data availability/cost
 - Preliminary choice of models
- Model choice: goal driven
 - ▷ Goal: assessment/prediction/control?
 - ▷ Proper definition of reliability
 - time/input/stage/coverage?
 - ▷ Current or future reliability?
 - Reliability goals as exit criteria
 - Management and improvement

Choice of Models

- Choice based on experience
 - Previous choices and experience
 - models fitted obs. well?
 - other results: positive/negative?
 - overall feedback from development?
 - ▷ Both local and non-local experience
 - ▷ Baseline for comparison
 - Adaptation and refinement for now
- Other factors
 - Match model assumptions with reality
 - implications/limitations later
 - ▷ Tools and software support
 - SMERFS, CASRE, etc. (Lyu Book)
 - integration with other tools?

Basic Functions and Definitions

- Some basic functions/definitions:
 - F(t): cdf for failure over time f(t): pdf, f(t) = F'(t) Reliability function R(t) = 1 F(t) $R(t) = P(T \ge t) = P(\text{no failure by } t)$ Hazard function/rate/intensity $z(t)\Delta t = P\{t < T < t + \Delta t | T > t\}$ Mean function m(t) in NHPP $\text{Failure rate/intensity, } \lambda(t) = m'(t)$ Time domain definition:

$$R = \frac{s}{n} = \frac{n-f}{n} = 1 - \frac{f}{n} = 1 - r$$

▷ MTBF, MTTF, etc.

• Details/relations: Tian/SQE book Ch.22.

SRGM Classification

• Data used:

- Time-between-failure (TBF) models – r.v.: failure interval
- ▷ Failure-count (FC) models
 - r.v.: failure count for given interval
- ▷ Most widely used (in this class)
- Some models can use both TBF and FC data
- Other classifications possible
 - ▷ Time measurement:
 - calendar/wall-clock/execution/etc. time
 - ▷ Distribution/f-arrival function:
 - Poisson/binomial/etc.
 - Finite vs infinite failures
 - ▷ Musa Book, Chapter 9, Section 9.4.

TBF Models

- Model characteristics
 - ▷ Failure intervals as r.v.
 - $-T_i$: r.v. for the time between
 - (i-1)st and *i*th failures
 - \triangleright Distribution $F_i(t)$ or $f_i(t)$
 - \triangleright Directly define $z_i(t)$
 - \triangleright Relate $z_i(t)$ to failures/faults
- Defining TBF models
 - \triangleright Sequence of $z_i(t)$ over i
 - ▷ Initial value?
 - Physical interpretation
 - Cumulative or rate data plotting

TBF1: Jelinski-Moranda

- One of the earliest model using TBF (time-between-failure) measurement
- Failure rate $(z_i \text{ or } \lambda_i)$:
 - Proportional to defects remaining
 - ▷ Step function: $z_i = \phi(N (i 1))$
 - \triangleright z_i : failure rate for the *i*-th failure
 - ▷ Two model parameters:
 - ϕ constant for failure exposure
 - ${\cal N}$ constant for total defects
- Relation to later models
 - ▷ Similar assumptions
 - ▷ Other failure rate: geometric etc.
 - ▷ Continuous version: Goel-Okumoto etc.

TBF2-3: Schick-Wolverton

- Variations of TBF1 model
- Schick-Wolverton linear model (TBF2):
 - Proportional to defects remaining
 - ▷ But it is time dependent
 - Slope function with renewal

$$\triangleright \lambda_i = \phi(N - (i - 1))t$$

- ▷ Assumptions/parameters similar to TBF1
- Schick-Wolverton parabolic model (TBF2.1):
 - ▷ Similar to TBF2
 - ▷ 2nd order function with renewal
 - $\triangleright \lambda_i = \phi(N (i 1))(at^2 + bt + c)$
 - Assumptions/parameters similar to TBF1

TBF4: Geometric Models (Moranda)

- Similar to Jelinski-Moranda
- Failure rate
 - Step function but geometric step sizes

$$\triangleright \ \lambda_i = \lambda_0 \phi^{i-1}$$

- $\triangleright \lambda_i$: failure rate for the *i*-th failure
- ▷ Two model parameters:
 - $-\phi$: step reduction/curvature
 - $-\lambda_0$: initial failure rate
- Relation to later models
 - Close relation to Musa-Okumoto model (logarithmic Poisson)
 - Models defect discovery situations
 - > Hybrid geometric Poisson

$$\lambda_i = \lambda_0 \phi^{i-1} + c$$

TBF5: Imperfect Debugging

- Goel-Okumoto
- Failure rate
 - Similar to Jelinski-Moranda
 - ▷ Step function
 - Allow for imperfect debugging

$$> \lambda_i = \phi(N - p(i - 1))$$

- ▷ p: prob(imperfect debugging)
- Other parameters same
- Relation to later models
 - Close relation to Goel-Okumoto NHPP model
 - Models defect removal process

TBF6: Littlewood-Verrall

• Bayesian model

- \triangleright t_i : *i*-th inter-failure interval
- \triangleright Distribution (pdf) for t_i :

$$f(t_i|\lambda_i) = \lambda_i e^{-\lambda_i t_i}$$

- $\triangleright \lambda_i$: failure rate parameter
- \triangleright Distribution (pdf) for λ_i :

$$f(\lambda_i | \alpha, \psi(i)) = \frac{[\psi(i)]^{\alpha} \lambda_i^{\alpha - 1} e^{-\psi(i)\lambda_i}}{\Gamma(\alpha)}$$

▷ $\psi(i)$: increasing function of *i* ▷ α : constant

• In SMERFS, LV model with $\psi(i)$:

$$\flat \ \psi(i) = \beta_0 + \beta_1 i \text{ , or}$$
$$\flat \ \psi(i) = \beta_0 + \beta_1 i^2$$

FC Models

- Model characteristics
 - \triangleright Failure count N_i as r.v.
 - ▷ Time interval: predefined
 - equal: Schneidewind model
 - different: other models
 - Distribution: failure arrival process
 - Directly define process parameters
 - ▷ NHPP most common
- Defining FC models
 - ▷ Time intervals
 - > Underlying stochastic processes
 - Physical interpretation
 - Cumulative or rate data plotting

FC1: Goel-Okumoto

- Process assumption: NHPP (Non-homogeneous Poisson Process)
- Model definition:

 \triangleright Probability of *n* failures in [0, t]:

$$P(N(t) = n) = \frac{m(t)^n}{n!}e^{-m(t)}$$

 \triangleright m(t): mean function

$$m(t) = N(1 - e^{-bt})$$

 $\triangleright \lambda(t) = m'(t)$: failure rate

$$\lambda(t) = Nbe^{-bt}$$

- \triangleright N is the total estimated failures
- \triangleright b captures failure exposure
- Data: period failure count (PFC model)
 (N(t) is the random variable)

FC Models: Other NHPP

Similar to Goel-Okumoto model

$$P(N(t) = n) = \frac{m(t)^n}{n!}e^{-m(t)}$$

• S-shaped SRGM (2 variations)

▷
$$m(t) = N(1 - (1 + bt)e^{-bt})$$

▷ $m(t) = N(1 - e^{-bt})(1 + ce^{-bt})$

- ▷ Allow for slow start
- Modified Goel-Okumoto

▷
$$m(t) = N(1 - e^{-bt^c})$$

▷ Similar to modified Jolinski M

- Similar to modified Jelinski-Moranda
- Logarithmic Poisson (Musa-Okumoto)

$$m(\tau) = \frac{1}{\theta} \log(\lambda_0 \theta \tau + 1)$$

FC Models: Generalized Poisson

- Differences with previous NHPP:
 - Segmented rather that global NHPP
 - Each segment has own parameters
 - Sequence follows some function
- Schneidewind & Generalized Poisson:
 - ▷ NHPP overall
 - ▷ Each segment a Poisson process:

$$d_i(t) = \lambda_i(t) = \alpha e^{-\beta i}$$

▷ Generalized Poisson

$$m_i(t) = \phi(N - M_{i-1})g_i(x_1, x_2, \dots, x_i)$$

Can treat many models as special cases of this model

FC Models: Brooks-Motley

- Process assumption:
 - ▷ Poisson variation
 - ▷ Binomial variation
- Model definition:
 - Each period a binomial/Poisson process
 - ▷ Progression:
 - $-n_{ij}$ failures for *i*th session, *j*th module
 - with length K_{ij} or t_{ij}

- binomial
$$q_{ij} = 1 - (1-q)^{K_{ij}}$$

$$P(X = n_{ij}) = \begin{pmatrix} N_{ij} \\ n_{ij} \end{pmatrix} q_{ij}^{n_{ij}} (1 - q_{ij})^{N_{ij} - n_{ij}}$$

- Poisson $\phi_{ij} = 1 - (1 - \phi)^{t_{ij}}$

$$P(X = n_{ij}) = \frac{\left(N_{ij}\phi_{ij}\right)^{n_{ij}}e^{-N_{ij}\phi_{ij}}}{n_{ij}!}$$

 $-q_{ij}$, ϕ_{ij} : binomial/Poisson constant

FC Models: Musa

- Variations of Musa models
 - Prescriptive: derived from product/process characteristics
 - ▷ Descriptive: fitted, similar to prev. SRGMs
 - Execution time: used in modeling
 - Calendar time: used in management
 - Conversion between the two times
- Musa models (descriptive):
 - Basic Musa: resembles Jelinski-Moranda
 - (Musa-Okumoto) logarithmic Poisson
 (a variation of NHPP model)

$$m(\tau) = \frac{1}{\theta} \log(\lambda_0 \theta \tau + 1)$$

Execution time used in both above

FC Models: Musa

- Practicality of Musa models
 - Software usage: operational profile and execution time
 - Predictions (prescriptive) based on process and product characteristics
 - Practical issues dealt in Musa book
 - ▷ Practicality vs. theoretical focus
- Applications of Musa models
 - \triangleright AT&T projects: 10-20%
 - ▷ Best practice at AT&T
 - > Adoption in other environments
 - ▷ Tool and other support:
 - AT&T's SRE ToolKit
 - training and benchmarking
 - Most publicized success stories

Choice of SRGMs

- Issues discussed before:
 - Goal/environment/experience
 - ▷ Tool/data availability
- Other model choice issues:
 - ▷ Time measurement and model fit.
 - ▷ Single vs. multiple models.
 - Composite models possible/meaningful?
 - ▷ Existing vs. new models.
 - ▷ Assumptions/limitations/applicability.
 - ▷ (to be examined further next...)

Choice of SRGMs

- Time measurement and model fit:
 - \triangleright experience at AT&T (exec. time!)
 - ▷ IBM experience
 - \triangleright bad fit \Rightarrow time appropriate?
 - ▷ (compare: bad fit \Rightarrow other model)
- Single vs. multiple models:
 - best fitted vs. optimistic (fast rel. growth)
 vs. pessimistic (slow ..)
 - ▷ band/range instead of single estimate
 - > related: synthesized/composite models
- Existing vs. new models:
 - simplicity of existing models
 - ▷ validation of new models
 - ▷ caution against ad-hoc new models

Alternatives to SRGMs

- *Reliability:* Prob(failure-free operation)
 - \triangleright Time: how to measure \Rightarrow SRGMs
 - Input: characterize/classify
 - Assumptions: failure/OP/time/distr
 - Applicability and limitations
- Alternatives to SRGMs:
 - Input domain/combinatorial
 - also fault seeding
 - Hybrid models: Cleanroom model
 - Coverage-based and predictive
 - ▷ TBRMs: tree-based reliability models
 - both time/input info. (SRE.2)

Mills Fault Seeding Model

- Assumptions (BIG!)
 - ▷ Random seeding, same distribution
 - Same probability for detection
 - > Hyper-geometric distribution

• Seeding/tagging to estimate population

- \triangleright n_s seeded, x_s captured
- \triangleright *n*_o original, *x*_o captured
- \triangleright Prob(finding exactly x_s and x_o):

$$P = \frac{\binom{n_o}{x_o}\binom{n_s}{x_s}}{\binom{n_o + n_s}{x_o + x_s}}$$

▷ ML estimate of n_o given by $\hat{n_0}$

$$\hat{n_0} = \frac{n_s x_o}{x_s}$$

Nelson's Input Domain Model

• Nelson Model:

- \triangleright Running for a sample of *n* inputs.
- \triangleright Randomly selected from set E:

$$E = \{E_i : i = 1, 2, \dots, N\}$$

Sampling probability vector:

$$\{P_i : i = 1, 2, \dots, N\}$$

- $\triangleright \{P_i\}$: Operational profile.
- \triangleright Number of failures: f.
- ▷ Estimated reliability = success rate:

$$R = \frac{n-f}{n} = 1 - \frac{f}{n} = 1 - r$$

 \triangleright r: failure rate.

• Repeated sampling without fixing.

Other Input Domain Models

- ▷ Explicit input state distribution.
- \triangleright Known probability for sub-domains E_i
- $\triangleright f_i$ failures for n_i runs from subdomain E_i

$$R = 1 - \sum_{i=1}^{N} \frac{f_i}{n_i} P(E_i)$$

- Ramamoorthy-Bastani:
 - \triangleright Safety critical systems, $\hat{R}=1$
 - \triangleright Confidence level for \hat{R}
 - $\triangleright x_i$ specific set of inputs
 - \triangleright P(program correct | correct for x_i 's)

$$P = e^{-\lambda V} \prod_{i=1}^{n-1} \frac{2}{1 + e^{-\lambda x_i}}$$

- \triangleright λ source code complexity
- Recent development by Woit-Parnas

Ho's Input Domain Model

- Step 1: Symbolic execution tree
 - ▷ Execution tree generation
 - \triangleright Path identification T_i
 - \triangleright Path frequency assignment p_i
- Step 2: Path reliability R_i
 - ▷ Estimate vs. bound
 - Use Nelson models
 - Ramamoorthy-Bastani model
- Step 3: System reliability for m paths with probability p_i and reliability R_i

$$R = \sum_{i=1}^{m} p_i R_i$$

Cleanroom Reliability Model

- Hybrid model
 - Reliability growth over stages
 - Random sampling within stage
- Factors affecting reliability
 - ▷ Increment testing: reliability change
 - Mixture of untested and tested codes
- Certifying statistical quality
 - \triangleright MTTF = MR^c
 - ▷ M: Initial MTTF
 - ▷ R: Effective ratio for change
 - ▷ c: software changes

Coverage and Coverage-Based Models

- Alternative: coverage analysis
 - Defect fixing effect
 - Infeasibility of exhaustive testing
 - ▷ Pure coverage vs. cov-based models
- Focus on input/internal state coverage:
 - ▷ Function/data/statement coverage.
 - ▷ Path and dependency coverage.
 - ▷ Assumption: coverage $\uparrow \Rightarrow$ reliability \uparrow (qualitative relation, not quantified)
- Coverage-based modeling:
 - ▷ Analytical: Weyuker etc.
 - ▷ Empirical: Mathur etc.
 - ▷ Mixed: Chen/Lyu/Wong.

General Assumptions and Implications

- Times between failures are independent
 - Implies randomized testing
 - ▷ Practical scenarios:
 - defect fixing effect
 - structure/progression in testing
- Immediate defect removal
 - Duplicate defect counting
 - ▷ Related but not duplicate?
 - ▷ Infeasible for in-field defects
- No new fault injected
 - ▷ Reliability growth assured
 - ▷ Practical: injection < removal
 - ▷ Related: Decreasing failure rate

Assumptions and Implications

- Relating failure rate to number of faults
 - ▷ Variations to the assumption
 - proportionality between the two
 - functional relation between the two
 - time dependent relation
 - Implications of failure detection and detection sequences
- Operational profile
 - Ensures reasonable/meaningful reliability assessments and predictions
 - ▷ Limits applicability
- Time as a basis for failure rate
 - Equivalent time units
 - Requires proper time measurement

Assumptions and Applicability

- General considerations
 - > Assumptions for different model types
 - ▷ Tian/AIC paper
 - Match them to application environment
 - models necessarily simple
 - impossible perfect match
- Applicability to different processes
 - ▷ Waterfall generally assumed
 - ▷ Testing phases
 - ▷ UBST (BBT also?): SRGMs and ID
 - ▷ WBT: coverage
 - ▷ Incremental development: cleanroom
 - Spiral model: iterations
 - Operational phases
 - difference in defect removal
 - data availability

Applicability to Different Phases

- Requirement and specification
 - Reliability goal from customer expectation and feasibility (also affordable?)
 - Operational profile construction
 - Prepare for random testing
- Design and coding
 - ▷ Fault detection and removal (QA)
 - Musa's prescriptive model
 - ▷ Other existing models not applicable
 - ▷ Alternative models may be needed:
 - fault and error based models
 - constructive information (white box)
 - predictive models relating to reliability

Applicability to Different Phases

- Unit testing
 - White-box deterministic testing
 - \triangleright Tester = developer
 - Applicable: fault seeding, coverage-based, (Musa's prescriptive?)
 - Other models not applicable
- Integration and system testing
 - ▷ FVT, SVT, regression, integration
 - ▷ Focus: customer oriented operations
 - ▷ Less emphasis on coverage
 - ▷ Main phase for SRGMs
 - ▷ FC models more robust
 - ▷ Random testing conformance?
 - ▷ Use of other models

Applicability to Different Phases

- Acceptance testing
 - Gate: accept/release or not
 (also plan for product support)
 - ▷ Basis: snapshot(s) or random sampling
 - Cleanroom-like model usage
 - Input domain model appropriate
 - ▷ Others, maybe?
- Operational phase:
 - ▷ Actual operations (post-release)
 - ▷ Beta or ECI programs (pre-release)
 - Difference in operational environments
 - Data availability and treatment
 - ▷ Reliability vs. availability
 - Defect fix and product refreshing
 - Business decisions

Applications and Examples

- Overall procedure
 - ▷ A lot of preparation
 - Generic: preparation/modeling/followup
 - Routine procedure once started
 - Often periodic activities
 - Evaluation/feedback/improvement
- Application examples
 - ▷ Data: telecommunications (Musa)
 - Wide applications of Goel-Okumoto, Musa, and other models
 - Shuttle: Schneidewind and Keller
 - ▷ Examples in IBM