Software Reliability and Safety CSE 8317 — Fall 2007

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.07f

SRE.2: TBRMs & Integrated SRE

- Experience with existing approaches
- TBRMs: Tree-based reliability Models
- Integrated SRE using TBRMs & others

Overview

- Reliability: Prob(failure-free operations)
 - ▷ time domain: for a specific period.
 > reliability growth models
 - \Rightarrow reliability growth models.
 - ▷ *input domain*: for a specific input set. \Rightarrow repeated sampling models.
- A new integrated approach: TBRMs
 - ▷ tree-based reliability models (TBRMs)
 - ▷ both input/time domain information.
 - ▷ data driven/sensitive partitions.
 - \triangleright method: tree-based modeling (TBM).
 - ▷ risk focusing and remedial actions.
 - ▷ details: AIC paper (Tian 1998)

Product Environment

- Large (medium-reliable) products:
 - Commercial: RDBMS, compilers, software tools and computing environments.
 - ▷ Later: Telecommunication products.
 - ▷ Size: Up to millions of LOC.
 - ▷ Widely distributed/large user population.
 - ▷ No precise operational profile.
 - ▷ Process: roughly waterfall.
- Overall testing:
 - \triangleright Long testing period (2 \sim 18 months).
 - ▷ Different testing sub-phases.
 - ▷ System testing focuses on reliability.
 - ▷ Test-until-it-breaks commonly used.
 - ▷ Staffing level variations.
 - ▷ Code base stability.

Testing Environment

- Scenario-based testing.
 - ▷ Shifting focus: learning/dependency.
 - ▷ Structure: high level functions.
 - ▷ Within scenario class (SC):
 - randomized workload
 - progression: complexity & intensity \uparrow
 - defect fixing and related runs
 - division among testers.
- Specific reliability analysis issues:
 - \triangleright Scenario-based \sim random testing
 - due to parallelism and interleaving
 - ▷ Defect fixing effect:
 - no long-term dependency \Rightarrow grouping
 - \triangleright Uneven faults \Rightarrow TBRMs

Needs and Constraints

- Need assessment and analysis: (current status & urgency of needs)
 - ▷ Track test effort, progress and defect.
 - ▷ Reliability assessment and prediction.
 - ▷ Effective defect detection and removal.
 - ▷ Process and quality improvement.
- Environmental constraints:
 - ▷ Minimize cost & schedule risks.
 - ▷ Data availability and affordability.
 - ▷ Process refinement.
 - ▷ Maximize data utilization.
- Recommendation: new, evolutionary approach, with support.

Overall Solution

- Combine SRGMs and IDRMs into TBRMs.
- Analysis and control:
 - ▷ SRGMs (s/w rel. growth models).
 - ▷ TBRMs: tree-based reliability models.
 - ▷ Progress monitoring & exit criteria.
- Problem identification and correction:
 - ▷ Use of input domain information
 - IDRMs (input domain rel. models)
 - identify high risk areas
 - ▷ Automatic partitioning via TBRMs.
 - ▷ Remedial actions for improvement.

Applications: Overview

- Product coverage:
 - ▷ Commercial products from IBM.
 - ▷ Improvement over original process.
 - ▷ Evolutionary approach:
 - 1. individual techniques.
 - 2. integration and refinement.
 - ▷ Recent work with Nortel Networks.
- Scope of Engagement:
 - ▷ Data definition and collection.
 - ▷ Data visualization and analysis.
 - ▷ Test progress tracking.
 - ▷ Reliability analysis with SRGMs.
 - ▷ Reliability improvement with TBRMs.

Applications: Testing & Data

- Data and tracking:
 - ▷ Integration with schedule information.
 - ▷ Normalization effect.
 - ▷ Summary reports and visualization.
 - ▷ Consistency checking automation.
- Customer usage information gathering
 Operational profile construction.
- Coverage and input-domain analysis:
 - ▷ Functionality/function/static/dynamic.
 - Different levels of coverage for different testing phases.
 - ▷ Focused coverage through TBRM.

SRGMs: Application Experience

- Time measurement:
 - ▷ calendar time.
 - ▷ execution time: Musa models.
 - ▷ logical time: runs, transactions, etc.
 - ▷ usage dependent or independent?
 - measurement implementation/cost?
- Model applicability and effectiveness:
 - ▷ calendar time models useless.
 - \triangleright exec. time models costly & sensitive.
 - usage/activity-based time measurements (runs, transactions, etc.) suitable.
 - ▷ context sensitive modeling for sub-groups or sub-phases \Rightarrow TBRMs.

SRGM Conclusions

- Modeling result interpretation:
 - ▷ Accuracy of models:
 - assessment, model goodness-of-fit.
 - prediction: training & testing sets
 - \triangleright Product purity at exit.
 - ▷ Bound estimations: multiple models.
 - ▷ Convergence of modeling results.
- Evolving to usage-based data/model:
 - ▷ Assurance of homogeneity:
 - if 'yes', run-based data/model;
 - if 'no', transaction measurement.
 - ▷ Suitable for input domain analysis.
 - ▷ Serve as cross validation for TBRMs.

Assessing Existing Approaches

- Time domain reliability analysis:
 - ▷ Customer perspective.
 - ▷ Overall assessment and prediction.
 - ▷ Ability to track reliability change.
 - ▷ Issues: assumption validity.
 - ▷ Problem: how to improve reliability?
- Input domain reliability analysis:
 - ▷ Explicit operational profile.
 - ▷ Better input state definition.
 - ▶ Hard to handle change/evolution.
 - ▷ Issues: sampling and practicality.
 - Problem: realistic reliability assessment?

An Integrated Approach

- Combine strengths of the two.
- Using TBRM for individual modeling:
 - ▷ Input state: categorical information.
 - ▷ Each run as a data point.
 - ▷ Time cutoff for partitions.
 - Data sensitive partitioning
 - \Rightarrow Nelson models for subsets.
- Integrated reliability analyses:
 - ▷ TBRM: partitioned subset reliability.
 - ▷ Use both input and timing information.
 - ▷ Monitoring changes in trees.
 - ▷ Enhanced exit criteria.
 - ▷ SRGM: overall reliability near exit.
 - ▷ Integrate into the testing process.

TBM: Technique for Integration

- Basic ideas:
 - ▷ TBM: tree-based models.
 - ▷ Tree: nodes=data-set, edges=decision.
 - ▷ Data: 1 response variable Yand n predictor variables X_1, \ldots, X_n .
 - Construction: recursive partitioning.
 (controlled growth vs growing&pruning)
- Usage and applications:
 - \triangleright Basic usage: $Y = Tree(X_1, \ldots, X_n)$
 - ▷ Applicability: mixed-types of data.
 - Past applications: social sciences
 - In SE: risk identification by Selby & Porter, Tian & Troster, etc.
- Details: Tian/SQE book Ch.21.

TBRM in Integrated Analysis

- Tree-based reliability models (TBRMs) using all information:
 - ▷ Input domain partitioning information.
 - ▷ Testing results.
 - ▷ Timing information.
 - ▷ Each run as a data point.
- Model construction:
 - ▷ Response: Result indicator.
 - 1 for success, 0 for failure.
 - \Rightarrow Nelson model for subsets.
 - Mapping to failure rate or MTBF.
 - ▷ Predictor: Timing and input states.
 - Data sensitive partitioning.
 - Key factors affecting reliability.
 - Homogeneity of product reliability.

Using Integrated Analysis

- Interpretation of trees:
 - Predicted response: success rate.
 (Nelson reliability estimate.)
 - ▷ Time predictor: reliability change.
 - ▷ State predictor: risk identification.
- Monitoring reliability change:
 - ▷ Change in predicted response.
 - ▷ Through tree structural change.
- Risk identification and remedies:
 - ▷ Identify high risk input state.
 - ▷ Additional analysis.
 - ▷ Enhanced test cases.
 - ▷ Remedies for components.

TBRMs in Integrated Analysis

- Treatment of product bundles:
 - ▷ TBRM for individual products.
 - ▷ Dynamic change w.r.t. process needs.
 - \triangleright SRGM (& TBRM) for bundle near exit.
- Risk identification:
 - ▷ High risk input sub-domains.
 - ▷ Additional analysis for the identified.
 - ▷ Guide for remedial actions.
- Results interpretation:
 - ▷ Progression of trees & tree types.
 - ▷ Usage as exit criteria.

Cross Validation

- Consistency with macro models:
 ⇒ Effects on cost, schedule, quality.
- Validate with reliability growth models:
 - ▷ Trend of reliability growth.
 - ▷ Stability of failure arrivals.
 - ▷ Estimated reliability.
 - ▷ Product purity level at exit.
- Process changes & improvements:
 - ▷ Failure detection and fault removal.
 - ▷ Long term effect on development.
- Ultimate test: in-field problems.

Integrated Approach: Implementation

- Modified testing process:
 - ▷ Additional link for data analysis.
 - ▷ Process change and remedial actions.
- Activities and Responsibilities:
 - ▷ Evolutionary, stepwise refinement.
 - ▷ Collaboration: project & quality orgs.
 - ▷ Experience factory prototype (Basili).
- Implementation:
 - ▷ Passive tracking and active guidance.
 - ▷ Periodic and event-triggered.
 - ▷ S/W tool support

Implementation Support

- Types of tool support:
 - ▷ Data capturing
 - mostly existing logging tools
 - modified to capture new data
 - ▷ Analysis and modeling
 - SMERFS modeling tool
 - S-PLUS and related programs
 - Presentation/visualization and feedback
 - S-PLUS and Tree-Browser
- Implementation of tool support:
 - \triangleright Existing (IBM+others) tools: cost \downarrow
 - New tools and utility programs
 - ▷ Tool integration
 - loosely coupled suite of tools
 - connectors/utility programs
 - common depository: S-PLUS

Application Summary

- Tracking and input-domain analysis:
 - ▷ Effectiveness of visualization.
 - ▷ Problems with input-domain assessment.
- Time-domain analysis refinement:
 - ▷ Data normalization by runs/trans best.
 - Context sensitive modeling promising.
- Integrated approach using TBRM:
 - ▷ Guidance as well as assessment.
 - \triangleright Risk focusing \Rightarrow reliability improvement.
 - ▷ Progression of trees.
 - ▷ Usage as exit criteria.
 - ▷ Cross validation.

Future Directions

- Implementation and deployment:
 - ▷ Data: automated data capturing.
 - ▷ OP: evolutionary approach.
 - ▷ Integration: analysis and improvement.
 - ▷ Use in different industrial environments.
- Exploration and improvement:
 - ▷ Customize time/transaction measurement.
 - ▷ Early indicators/predictive modeling.
 - ▷ Customer environment/OP refinement.
 - ▷ Integrate to life-cycle quality models.
 - ▷ Management and cost modeling.
 - ▷ Refinement of modeling techniques.
- Continued research at SMU and collaboration with our industrial partners.