Software Reliability and Safety CSE 8317 — Fall 2008

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.08f

OV.1. Overview

- Defining Quality, Reliability, and Safety
- SRE: Software Reliability Engineering
- SSE: Software Safety Engineering
- CSE 8317 Perspective and Common Analyses

Quality: Views and Aspects

View	Attribute	
	Correctness	Effectiveness
Customer	Failures:	Usability
(external)	reliability	Maintainability
	safety	Portability
		Performance
		Installability
		Readability
Developer	Faults:	Design
(internal)	count	Size
	distr	Change
	class	Complexity
	hazard	control
		data
		presentation

• 8317: Reliability/safety focus

Things affect reliability/safety

What Is Reliability?

- Reliability: Probability of failure-free operation for a specific time period or for a given set of input conditions under a specific environment
 - Probability: quantitative/statistical
 - ▶ Failure: behavioral deviations

 - ▷ Environment: OP and UBST
- Software reliability engineering (SRE):

 - Reliability assessment
 - Reliability and other predictions
 - Decision making and management
 - Reliability and process improvement

What Is Safety?

- Safety: The property of being accidentfree for (embedded) software systems.
 - > Accident: failures with severe consequences
 - > Hazard: condition for accident
 - Related to but distinct from reliability
 - Specialized techniques
- Software safety engineering (SSE):
 - > Failure prevention and fault tolerance
 - Hazard identification/analysis techniques
 - Hazard resolution alternatives
 - ▷ Safety and risk assessment
 - Qualitative focus
 - Safety and process improvement

Reliability, Safety and Defects

- Defect/bug definition: SQE Ch.2
 - - deviation from expected behavior
 - ▶ Fault: internal characteristics
 - cause for failures
 - ▷ Error: missing/incorrect actions

 - ▷ Safety-related: accident & hazard
- Defect and quality assurance: SQE Ch.3
 - ▶ Preventive actions based on analysis
 - ▶ Fault removal: insp./testing/verification
 - ▶ Fault tolerance (and safety assurance)
- Reliability/safety negatively correlated to defect (failure view).

Measurement, Analysis, & Modeling

- Measurements: SQE Ch.18
 - ▶ Result: success/failure/accident/etc.
 - > Indirect measurements, as predictors:
 - activity/product internal/environment
- Analysis and modeling:
 - ▶ Model categories/context: SQE Ch.19
 - ▷ Defect analysis: SQE Ch.20

 - ▷ SRE/SSE models:
 Data ⇒ reliability & safety
- 8317 focus: Analysis-based resolution for reliability/safety assurance and improvement

Reliability Analyses and Models

- SRE(.2).3: model = function relations e.g., failure \sim time or input.
- Time domain approach

 - Statistical modeling
 - ▶ Failure count/interval/rate data
 - > Time and other measurements
 - ▷ SRGMs: s/w reliability growth models
 - Assessment/prediction/decisions
- Input domain approach
 - Repeated random sampling
 - Related definitions and models
 - input domain reliability models
 - > Fault seeding models

Reliability Analyses and Models

- TBRMs: tree-based reliability models
 - ▶ Both time/input domain info.
 - Additional benefit:
 - risk identification
 - guide for focused remedial actions

 - Development/application/SMU research
 - → Major focus in 8317 (SRE.2)
- Other related issues: SRE.4
 - ▶ Implementation & applications
 - > OP development & QA activities

 - Data treatment
 - ▶ Reliability composition, etc.

Safety Analysis & Improvement

- Hazard analysis and resolution (SSE.2)
 - Focus: accidents and pre-conditions (hazards), not other failures

 - ▶ Identification and analysis
 - ▶ Resolution: elimination/reduction/control
 - ▷ Integration in development process
 - SSP (software safety program)
 - "Safeware", Part IV (Ch.11-18)
- Formal verification related:
 - → Main part: SSE.3, SQE Ch. 15.
 - ⊳ PSC: SSE.4, SQE Ch. 16.5

Safety Analysis & Improvement

- Hazard analysis:
 - ▶ Fault trees: (static) logical conditions
 - ▷ Event trees: dynamic sequences

 - > Related: hazard and risk assessment
- Hazard resolution (pre-accident)
 - Negate/block/mitigate/etc.
- Related: damage reduction (post-accident)

Safety Assurance & Improvement

- **Eliminate** identified hazard sources in material/component/software/etc.
- Reduce hazard likelihood/severity via:
 - Creating hazard barriers,
 - Minimizing failure probability, etc.
- Control hazard (after detection) via:
 - ▶ Isolation and containment,
 - ⊳ Fail-safe design, etc.
- Reduce damage (post-accident, as compared to pre-accident for the above)

How CSE 8317 Fits In?

- Software reliability engineering (SRE):
 - ▷ SRGMs/IDRMs: assessment/prediction;
 - > TBRMs and other recent development;
- Software safety engineering (SSE):

 - ▶ Hazard elimination/reduction/control;
 - ▷ Process integration, FV, FT, PSC, etc.
- Common analyses/techniques:

 - ▷ risk identification: SQE Ch.21