
1

2

3

4

5

6

8

9
10
11
12
13

14
15
16
17
18
19
20
21

2 2

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
O
O

FMulti-faceted quality and defect measurement for web software
and source contents q

Zhao Li, Nasser Alaeddine, Jeff Tian *

Southern Methodist University, Computer Science and Engineering Dept., Dallas, Texas 75275, USA

a r t i c l e i n f o a b s t r a c t
23
24
25
26
27
28
29
30
31
32
33
34
Article history:
Received 31 October 2008
Received in revised form 7 March 2009
Accepted 28 April 2009
Available online xxxx

Keywords:
Quality and reliability
Defect measurement and analysis
Web software and contents
Dynamic web applications
Web application development and
maintenance
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.04.055

q This work is supported in part by NSF Grants CCR
* Corresponding author. Tel.: +1 214 768 2861; fax

E-mail address: tian@engr.smu.edu (J. Tian).
URL: http://www.lyle.smu.edu/~tian (J. Tian).

Please cite this article in press as: Li, Z., et al. Mu
doi:10.1016/j.jss.2009.04.055
E
D

P
RIn this paper, we examine external failures and internal faults traceable to web software and source con-

tents. We develop related defect and quality measurements based on different perspectives of customers,
users, information or service hosts, maintainers, developers, integrators, and managers. These measure-
ments can help web information and service providers with their quality assessment and improvement
activities to meet the quality expectations of their customers and users. The different usages of our mea-
surement framework by different stakeholders of web sites and web applications are also outlined and
discussed. The data sources include existing web server logs and statistics reports, defect repositories
from web application development and maintenance activities, and source files. We applied our approach
to four diverse websites: one educational website, one open source software project website, one online
catalog showroom for a small company, and one e-Commerce website for a large company. The results
demonstrated the viability and effectiveness of our approach.

� 2009 Elsevier Inc. All rights reserved.
35
T
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78
U
N

C
O

R
R

E
C1. Introduction

The World Wide Web (WWW), or simply the web, is a way of
accessing information and conducting personal and business trans-
actions over the Internet. Initially intended as an information high-
way for publishing static hypertexts, the web is increasingly
supporting dynamic applications, with non-trivial computations
performed at run-time. The increased complexity also demands
disciplined methodologies and measurements for web application
development and maintenance (Fenton and Pfleeger, 1996; Pflee-
ger et al., 2002). With the prevalence of the web and people’s reli-
ance on it in today’s society, ensuring its satisfactory reliability is
also becoming increasingly important (Bélanger et al., 2006; Offutt,
2002).

Quality in software is generally characterized by the absence of
observable problems and satisfaction of user expectations, which
can also be related to some internal characteristics of the software
product and its development process (Chrissis et al., 2006; Pfleeger
et al., 2002; Tian, 2005). A quantitative measure of quality from a
user’s perspective is product reliability, or how likely a user can
use the software without encountering a failure (Musa, 1998; Tha-
yer et al., 1978). Alternatively, as the internal causes for observed
79

80

81

82

83

84

ll rights reserved.

-0204345 and IIP-0733937.
: +1 214 768 3085

lti-faceted quality and defect m
failures, software faults can be measured and analyzed to provide
an internal assessment of software quality and help drive quality
assurance and improvement activities (Fenton and Pfleeger,
1996; Kan, 2002).

Building upon our previous work adapting traditional quality
measurement and improvement techniques to the web domain
(Alaeddine and Tian, 2007; Kallepalli and Tian, 2001; Li, 2008;
Ma and Tian, 2007; Tian and Ma, 2006; Tian et al., 2004), we con-
struct a multi-faceted framework for measuring the software and
web contents quality and defects. After a brief review of basic con-
cepts in Section 2 and an examination of web challenges in Section
3, we introduce our measurement framework from several differ-
ent perspectives in subsequent sections:

� In Section 4, defect and usage data from in-field web applica-
tions captured in web server logs are used to evaluate website
operational reliability in providing the requested contents or
services and the potential for reliability growth under effective
testing. This external quality measurement and related failure
measurement are from a user’s perspective.

� Internal defects are measured and characterized using some
fault count and density metrics adapted to fit the web environ-
ment in Section 5, which are directly related to problem fixing
effort therefore meaningful to website maintainers and support
personnel.

� In Section 6, long-term trend in web application quality mean-
ingful to website owners, managers, business clients, and long-
term customers are captured in coarse-grain defect metrics
easurement for web software and source contents. J. Syst. Software (2009),

mailto:tian@engr.smu.edu
http://www.lyle.smu.edu/~tian
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
Original text:
Inserted Text
grants

Original text:
Inserted Text
&

Original text:
Inserted Text
Web,

Original text:
Inserted Text
Web

Original text:
Inserted Text
Web

Original text:
Inserted Text
?;

Original text:
Inserted Text
grants

T

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136136

137

138

139

140

141

142

143

144

146146

147

148

149

150

151

153153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

2 Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

based on data extracted from web statistics reports produced by
existing tools.

� For computation-rich dynamic Internet applications such as e-
Commerce, we provide measurement of underlying software
faults in the ‘‘deep” source view (He et al., 2007) of defect based
on data from web development and maintenance activities cap-
tured in defect repositories. Quality and defect measurement
from this perspective is particularly meaningful to web applica-
tion developers, integrators, and project managers. We also
present a procedure to convert the collective defect data from
both defect repositories and web server logs between the failure
view and fault view, effectively linking this internal view of web
quality to quality perception of users of such dynamic web
applications. These topics are covered in Section 7.

Case studies applying this approach to four diverse websites are
included throughout the paper to demonstrate its viability and
effectiveness, followed by an overall summary of our measurement
framework and its usage by different stakeholders of web sites and
web applications in Section 8. Conclusions and perspectives are
presented in Section 9.

2. Basic concepts, definitions, and measurements

Various terms related to problems or defects are commonly
used in discussing software quality and reliability. Several stan-
dard definitions (IEEE, 1990) related to these terms include:

� Failure: the inability of a system or component to perform its
required functions within specified performance requirements.
It is an observable behavioral deviation from the user require-
ment or product specification.

� Fault: an incorrect step, process, or data definition in a computer
program, which can cause certain failures.

Failures and faults are collectively referred to as defects, which
are tracked during software development and maintenance activi-
ties with the help of various tools. Software quality is typically
measured by how long the software can run before encountering
a failure from an external user’s perspective or by the number of
faults in the software that need to be fixed from an internal per-
spective. The former is captured by software reliability, formally
defined as the probability of failure-free operations for a software
system for a given period of time or a given input set under a spe-
cific environment (Musa, 1998; Thayer et al., 1978); while the later
is captured by defect or fault count and density (Kan, 2002).

To help us evaluate the current reliability and reliability change
over time, input domain reliability models (IDRMs) and time do-
main software reliability growth models (SRGMs) are commonly
used (Musa, 1998; Thayer et al., 1978). IDRMs provide a snapshot
of the current product reliability. For example, if f failures are ob-
served for n execution instances, the estimated reliability R accord-
ing to the Nelson IDRM (Nelson, 1978) is:

R ¼ n� f
n
¼ 1� f

n
¼ 1� r

where r is the failure rate, which is also often used to characterize
reliability.

If discovered defects are fixed over the observation period, the
defect fixing effect on reliability (or reliability growth due to defect
removal) can be analyzed by using various SRGMs. For example, in
the widely used Goel–Okumoto SRGM (Goel and Okumoto, 1979),
the expected cumulative failures, mðtÞ, over time t is given by the
formula:

mðtÞ ¼ Nð1� e�btÞ
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

F

where the model constants N and b can be estimated from the
observation data.

Both defect counts and defect density have been used as an
internal measure of software quality (Kan, 2002). Defect density
is typically defined as:

Defect density ¼ total number of defects
size of the software

� 100%

where the number of defects is the total defects identified against a
particular software entity during a particular time period. The size
of the software is a normalizer that allows comparisons between
different software entities. For traditional software, size is typically
counted either in Lines of Code (LOC) or Function Points (FP) (Fen-
ton and Pfleeger, 1996; Kan, 2002). Defect density can also be used
to assess the effectiveness of development and quality improve-
ment activities and, more importantly, to help identify defect prone
components for focused quality improvement.

3. Characterizing web challenges and opportunities

As a new type of software application, the web presents many
challenges. We next characterize web quality problems and exam-
ine opportunities to address these problems.

3.1. Web characteristics and problem definition

Compared to traditional software systems, web applications
have several unique characteristics:

� Size, population, and diversity: the sheer size of the web, the
diverse hardware/software/network configurations and support
facilities, the massive user population, and the varied usage pat-
terns need to be considered in measuring and ensuring web
quality.

� Evolving nature: taking advantage of the web infrastructure that
makes it easy for developers and maintainers to make additions,
updates, or changes, the web is continually evolving, with ever-
changing contents, functions, and services.

All parts of this complex and ever-changing system need to
function well to satisfy quality and other expectations of its mas-
sive and diverse user population. Based on these unique character-
istics, we define web failures as the inability to correctly obtain or
deliver information, such as documents or computational results,
requested by web users. The reliability for web applications can
be defined as the probability of failure-free web operation comple-
tions, which are typically among the top concerns for web users
(Bélanger et al., 2006; Offutt, 2002). Web software or source con-
tent failures are related to the acquisition of the requested informa-
tion by web users because of problems such as missing or
inaccessible files, trouble with starting JavaScript, etc. These fail-
ures and related internal faults that cause these failures are closely
identified with the site-specific web-based functions and services,
and will be the focus of our study. We exclude host and network
failures that prevent the delivery of requested information to web
users over the Internet and user and browser problems at the cli-
ent’s end, because they are beyond the control of web service or
content providers.

The above problems are only made worse with the introduction
and wide-spread usage of dynamic web applications, which have
become increasingly integrated into business strategies for compa-
nies. While the content of static web pages is fixed, the content of
dynamic pages is computed at run-time by the server according to
user input as well as the state on the server, such as the date, time,
user, location, or session information. Dynamic sites are highly
intertwined with the environment (browsers, operating systems,
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
The

Original text:
Inserted Text
An

Original text:
Inserted Text
Goel-Okumoto

Original text:
Inserted Text
Web Challenges

Original text:
Inserted Text
Opportunities

Original text:
Inserted Text
Web

Original text:
Inserted Text
The

Original text:
Inserted Text
Web,

Original text:
Inserted Text
Taking

Original text:
Inserted Text
Web

Original text:
Inserted Text
Web

Original text:
Inserted Text
ever changing

Original text:
Inserted Text
run time

T

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 3

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

database engines, web servers, and interfaces to onsite or offsite
applications). In addition to HTML documents and other static
components, dynamic web applications integrate a wide range of
technologies, including various language modules, data manipula-
tion languages, and databases. Dynamic web applications can be
broken down into components associated with four layers: presen-
tation, business logic, backend connectors/interfaces/proxies, and
data layers. In addition, some important components also involve
all layers, including state, cache, and environment/configuration/
deployment management. An important category of problems for
dynamic web applications is the missing or incorrect functional
behaviors and corresponding problem sources, which are also the
focus of our study.

3.2. Information sources for problem analysis and quality
measurement

Two types of log files are commonly used by web servers: indi-
vidual web accesses, or hits, are recorded in access logs, and related
problems are recorded in error logs. In fact, monitoring web usage
and keeping various logs are necessary to keep a website opera-
tional. Therefore, we would only incur minimal additional cost to
use these logs for web quality and defect measurement.

A ‘‘hit” is registered in the access log if a file corresponding to an
HTML page, a document, or other web content is explicitly re-
quested, or if some embedded content, such as graphics or a Java
class within an HTML page, is implicitly requested or activated.
Specific information in access logs typically includes: the identity
of the machine making the request, the user id used in authentica-
tion, the user identity, a time-stamp, the complete first line of the
HTTP request in quotes, the HTTP response code, total number of
bytes transferred, the referrer, and the agent. Error logs typically
include details about the problems or web failures encountered
preceded by an observation time-stamp.

For dynamic web applications used in e-Commerce and other
business applications, more disciplined development methodolo-
gies are adopted to coordinate development effort that spans be-
yond a few individuals over a short period of time. Defects are
formally logged, tracked, and resolved during the development
and maintenance activities, which provide additional valuable
data. We will refer to them as functional defects or incorrect or
missing implementations of requirements, which may only be de-
tected in development or system maintenance cycle but not
through analyzing web server logs. The recorded defect attributes
usually include: project name, defect summary, detail description,
date detected, assigned to, expected date of closure, detected by,
severity, defect ID, software build version, and any supplemental
notes. The data are stored in centralized repositories where each
defect record corresponds to a unique software fault.

In addition to the web server log data and defect repositories
above, some coarse-grain data and source files can also be used
to measure web quality and defects. More and more websites have
adopted web log analysis software into their web administration
tool collection to generate web statistics reports. Web server
source files are at least partially accessible to the public due to
the blending of source files with navigation facilities in HTML
and other documents. Therefore, we will also use such statistics re-
ports and source files for our quality and defect measurement.

3.3. Websites for our case studies

As a direct extension of our previous work adapting traditional
quality measurement and improvement techniques to the web do-
main (Alaeddine and Tian, 2007; Kallepalli and Tian, 2001; Li,
2008; Ma and Tian, 2007; Tian and Ma, 2006; Tian et al., 2004),
we started with the website for the Engineering School at Southern
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

F

Methodist University (SMU/SEAS, www.seas.smu.edu) that utilizes
the popular Apache Web Server and shares many common charac-
teristics of websites for educational institutions. Then, we gradu-
ally expanded our case studies to include three diverse websites,
including: the open source KDE project website (www.kde.org), a
online catalog showroom for a small company (hereafter labeled
SC), and an e-Commerce website for a large company in the tele-
communications industry (hereafter labeled LTC).

All these four websites use access logs to keep record of daily
activities. We extracted failure information in the form of entries
with specific response code for our defect and reliability analysis.
In addition, functional defects from development and maintenance
activities are available for LTC, which are ‘‘deep”-analyzed to exam-
ine the collective defects from both these sources in a systematic
way. Because of the data sensitivity issue, the only error logs, source
files, and long-term data available to us are for SMU/SEAS, restrict-
ing our detailed defect analysis, defect density analysis, and long-
term coarse-grain reliability analysis to this website only.

SMU/SEAS server log data used in our detailed defect and reli-
ability analysis cover 26 consecutive days in 1999. In addition,
we also performed defect density analysis based on a snapshot of
source files from 2006, and coarse-grain long-term reliability anal-
ysis based on web statistics reports from 2004 to 2006.

Through work with open source projects (Koru and Tian, 2004),
we obtained web logs from the KDE project. KDE is a network
transparent contemporary desktop environment for UNIX worksta-
tions developed and maintained by a large open group consisting
of hundreds of software engineers from all over the world. KDE
website provides project information, supports download of re-
leased documentation and software, and provides online develop-
ment facilities. Changes are continuously committed to the
website in order to provide the developers and users with the most
up-to-date information. We selected data over 31 days in 2003 for
our subsequent analyses.

SC website is a commercial website using HP Proliant as the web
server with Redhat ES. It uses a combination of scripts and static
pages, with the contents of most requested pages dynamically gen-
erated by the scripted language on-the-fly. PHP, Javascript and Perl
are used extensively to generate dynamic pages. Those scripts are
based on the open source software package ‘‘Gallery”, with modi-
fications made for SC’s business purposes. The access log data used
in this study cover 31 days in 2006.

LTC website is a deployed online ordering application for a large
telecommunication company that processes a couple of million re-
quests a day. It provides a wide range of services, including:
browse available telecom services, view accounts information, sub-
mit inquiries, order new services, change existing services, view or-
der status, and request repair. It consists of hundreds of thousands
of lines of code and utilizes IIS 6.0 (Microsoft Internet Information
Server). It was developed using Microsoft technologies such as ASP,
VB scripts, and C++. Both access logs and defect data repository for
LTC from 2007 are used in this study.
4. Web failures and reliability: a user’s perspective

Data about application failures attributed to software and source
contents can be extracted from existing server logs. When placed
into the context of the corresponding durations or usage instances,
these failures and related reliability give an overall picture of the
quality of the website or web application from a user’s perspective.

4.1. Preliminary analysis of common failures

Common web problems or failure types are listed in Table 1, to-
gether with the actual observations for SMU/SEAS (Kallepalli and
easurement for web software and source contents. J. Syst. Software (2009),

http://www.seas.smu.edu
http://www.kde.org
Original text:
Inserted Text
Individual

Original text:
Inserted Text
Failures

Original text:
Inserted Text
Reliability: A User’s Perspective

T
330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Table 1
Generic failure types and the recorded failures by type for SMU/SEAS.

Type Description #failures

A permission denied 2079
B no such file or directory 14
C stale NFS file handle 4
D client denied by server configuration 2
E file does not exist 28,631
F invalid method in request 0
G invalid URL in request connection 1
H mod_mime_magic 1
I request failed 1
J script not found or unable to start 27
K connection reset by peer 0
All types 30,760

4 Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

Tian, 2001). For SMU/SEAS, type E failures (‘‘file does not exist”) are
the most common type of problems, accounting for 93.1% of the to-
tal recorded failures. They usually represent bad links, which can
be further analyzed to assess web content reliability. The majority
of these bad links are from internal links, including mostly URLs
embedded in some web pages and sometimes from pages used
as start-ups at the same website (Tian and Ma, 2006). Only a small
percentage of these failures are from other websites (4.3%), web ro-
bots (4.4%), or other external sources, which are beyond the control
of the local site content providers, administrators, or maintainers.
Therefore, the identification and correction of these internal prob-
lems represent realistic opportunities for improved web content
reliability based on local actions.

From the HTTP response code in error logs, we can extract the
general failure information for other websites. For example, type
E failures in error logs are equivalent to access log entries with a
response code 404. The access logs for the KDE website for the
31 days recorded more than 14 million hits, of which 793,665 re-
sulted in failures. 785,211 hits resulted in response code 404,
which accounted for 98.9% of all the failures. The next most re-
ported failure type was of response code 408, or ‘‘request timed
out”, which accounted for 6225 or 0.78% of all the failures.

We also observed similar failure distributions for SC and LTC.
For example, the access logs for SC recorded more than 402,939
hits, of which 102,654 resulted in failures. Close to 100% of them,
or 102,647, are those with response code 404. For the LTC website,
7.20% of the recorded accesses resulted in failures, with 404 fail-
ures making up 98.1% of them, followed by 500 (server internal er-
ror) at 0.97%, All these results justified our focus on 404 failures.

4.2. Measuring workload and assessing operational reliability

In general, the failure information alone is not adequate to char-
acterize and measure the reliability of a software system, unless
there is a constant workload (Musa, 1998). Due to the vastly un-
even web traffic observed in our previous studies (Tian et al.,
2004; Tian and Ma, 2006), we need to measure both the web fail-
ures and usage time for reliability analyses. From the perspective
of web service providers, the usage time for web applications is
the actual time spent by every user at the local website. However,
the exact time is difficult to obtain and may involve prohibitive
Table 2
Daily failure rate r for SMU/SEAS.

Failure rate Min Max

Failures/bytes 2:35� 10�6 5:30� 10�6

Failures/hits 0.0287 0.0466
Failures/sessions 0.269 0.595
Failures/users 0.304 0.656
Failures/day 501 1582

Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

F

cost. To approximate the usage time, the following workload mea-
sures are used:

� Number of hits. This is the most obvious choice because (1) each
hit represents a specific activity associated with web usage, and
(2) each entry in an access log corresponds to a single hit, thus it
can be extracted easily.

� Number of bytes transferred, which can be easily obtained by tal-
lying the number of bytes transferred for each hit recorded in
access logs. If the workload represented by individual hits shows
high variability, it would measure workload more accurately
than hit count.

� Number of users, which gives us a rough picture of the overall
workload meaningful to the organizations that support various
services at the user level.

� Number of user sessions. If there is a significant gap between suc-
cessive hits from an IP address, we count the later one as a new
session, with the gap size adjusted to better reflect appropriate
session identification for the specific web applications.

To summarize, the above measures give us workload character-
ization at different levels of granularity and from different perspec-
tives. Hit count is more meaningful to web users as they see
individual pages; byte count measures web traffic better; while
number of users or sessions provide high-level workload informa-
tion to website hosts and content providers. No matter which
workload measure is used, the daily workload distribution varies
greatly for the four websites we studied, with the workload mea-
surements synchronized with the observed failures.

This synchronized relationship between workload and failures
can be characterized by the daily failure rate, as defined by the
number of failures divided by the workload measured by bytes
transferred, hits, users, or sessions for each day. These daily failure
rates also characterize web software reliability, and can be inter-
preted as applying the Nelson model (Nelson, 1978) to daily snap-
shots. Table 2 gives the range, the mean, and the standard
deviation (std.dev), for each daily failure rate defined above. Reli-
ability R can be calculated from Table 2 as R ¼ 1� r. For example,
the average web content reliability is R ¼ 0:9621, or 96.2% success
rate for individual web accesses, or averaging one failure for every
26.6 hits (1/R). Similar reliability measures with other measure-
ment units and for the other websites we studied were also calcu-
lated to give their respective users an overall picture of the
expected reliability.

Because these failure rates are defined for different measure-
ment units and have different magnitude, we used the relative
standard error, or rse, defined as: rse ¼ std:dev

mean , to compare their rel-
ative spread in Table 2. All these daily failure rates fall into tighter
spread than daily failure count, which indicates that they provide
more consistent and stable reliability estimates than daily failure
count alone. Expectedly, the same patterns hold for the other web-
sites we studied.

4.3. Evaluating potential reliability improvement

Under the idealized environment, the fault that caused each ob-
served failure can be immediately identified and removed, result-
Mean Std.dev rse

3:83� 10�6 9:33� 10�7 0.244
0.0379 0.00480 0.126
0.463 0.0834 0.180
0.5103 0.0859 0.168
1101 312 0.283

easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
1)

Original text:
Inserted Text
2)

Original text:
Inserted Text
(1/R).

T
D

P
R

O
O

F

423

424

425

426

427

428

429

430

431

432

433

434

435

437437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

•

•

•

•

•

•

•
•

• • •

•
•

•
• • • • • • • • •

usage time (#bytes transferred)

cu
m

ul
at

iv
e

fa
ilu

re
s

0 2*10^10 4*10^10 6*10^10

0
10

00
20

00
30

00
40

00
• Actual data

GO Model

Modeling Result Summary:
==============

 m(t) = N (1 - exp(-b*t))
 N= 5228

 b= 2.745e-11
==============

 failure rate: 1.847e-08
MTBF: 54130063

SSQ(residuals): 209002

Fig. 1. A sample SRGM fitted to KDE data.

Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 5

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

ing in no duplicate observations of identical failures. This upper
limit on potential reliability improvement can be measured by
the reliability change (or growth) through the duration when such
defect fixing could take place. For this analysis, each observed fail-
ure corresponds to a recorded 404 (or type E) failure, and the ide-
alized defect fixing would imply no more observation of any
duplicate failures. In other words, failure arrivals under this hypo-
thetical environment would resemble the sequence of unique fail-
ures extracted from the web server logs, which can be calculated
by counting each failure only once at its first appearance but not
subsequently. Quantitative evaluation of the reliability growth po-
tential can be captured by the purification level q (Tian, 2005) de-
fined as:

q ¼ k0 � kT

k0
¼ 1� kT

k0

where k0 and kT are the initial and final failure rates, respectively,
estimated by a fitted SRGM. A larger q value is associated with more
reliability growth, with q ¼ 1 associated with complete elimination
of all potential defects, and q ¼ 0 associated with no defect fixing at
all. ð1� qÞ gives us the ratio between kT and k0, or the final failure
rate as a percentage of the initial failure rate.

Fig. 1 plots the reliability growth evaluation using Goel–Okum-
oto (GO) model (Goel and Okumoto, 1979) for the KDE data to re-
late cumulative unique failures to cumulative workload measured
by the bytes transferred over 22 days. It gave us a reliability growth
potential of q ¼ 87:1%. When we used other usage time measure-
ments, including hits, users, sessions, q values for KDE fall into a
tight range between 86.7% and 88.9%. In other words, effective
web testing and defect fixing equivalent to 22 days of operation
could have reduced the failure rate to about 11% to 13% of the ini-
tial failure rate; or, equivalently, almost all the original problems
could have been fixed. Similar results were also obtained for the
other websites we studied.

5. Web faults and defect density: a maintainer’s perspective

Although there is a general causal relation between faults and
failures, it is not a one-to-one relation. Consequently, there is a
practical reason for us to analyze faults and failures separately
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
due to the different results expected, in addition to their different
purposes and perspectives.
E5.1. Fault measurement and analysis

Each identified software or content fault, in this case, the dom-
inant individual missing files for our four websites, needs to be
fixed by either providing the missing file or fixing the broken link.
To website maintainers, identifying, measuring and analyzing
these faults would be directly meaningful. Unlike failure observa-
tions that vary with usage instances, the underlying faults should
remain the same unless drastic development or maintenance effort
is applied. Therefore, for fault measurement, an overall count, dis-
tribution, and related analysis would be used instead of the time
dependent failure and reliability analyses we performed in the pre-
vious section. The missing files can be simply identified as the un-
ique failures in web server logs, counting each one only for its first
appearance while ignoring all the duplicate entries pointing to the
same missing file.

Table 3 gives the top impact faults for LTC, where the top five
missing file faults contribute to 91.39% of the total 404 failures.
For SMU/SEAS, 2913 missing files caused 28655 404 failures. The
average number of requests per missing file ranged from 9.84 for
SMU/SEAS to 209 for SC. We can also examine the distribution of
different types of faults (different missing file types in this case)
and the failures they cause, such as in Table 4 for SMU/SEAS. We
can see that the missing file fault distribution and corresponding
failure distribution are quite different, although a general positive
correlation exists between the two. To compare faults across differ-
ent websites or across different subsites, clusters, or subsets, we
need to normalize them by their size, to produced a normalized
measure similar to defect density used in traditional software
systems.
5.2. Web defect density measurement

Because the web is hyperlink-driven, with its complexity clo-
sely identified with inter-connectivity between files, we define
our defect density for the web environment as:
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
Goel-Okumoto

Original text:
Inserted Text
A

Original text:
Inserted Text
Web

Original text:
Inserted Text
Web

T
496496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Table 3
Top 404 failure producing faults for LTC.

HTTP fault Failures % 404 Failures

/images/dottedsep.gif 5805 32.46
/images/gnav_redbar_s_r.gif 3687 20.62
/images/gnav_redbar_s_l.gif 3537 19.78
/includes/css/images/background.gif 2593 14.50
/includes/css/nc2004style.css 721 4.03

Table 4
Faults and failures by file type for SMU/SEAS.

File type Faults % of total Failures % of total

Directory 1135 38.96 4425 15.44
.html 943 32.37 3656 12.76
.gif 287 9.85 12,489 43.58
.ico 125 4.29 849 2.96
.jpg 106 3.64 1323 4.62
.ps 55 1.89 209 0.73
.pdf 44 1.51 237 0.83
.doc 32 1.10 78 0.27
.txt 26 0.89 32 0.11
.class 25 0.86 4913 17.15
Cumulative 2778 95.37 27,491 98.45
Total 2913 100 28,655 100

Table 6
Defect density measurement for SMU/SEAS subsites.

Defect density In-site (%) Out-site (%) Overall (%)

JAVA 5 0.1 1.8 0.1
The rest 12.2 31.0 14.1

6 Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

Defect density ¼ number of broken hyperlinks
total number of hyperlinks

� 100%

To obtain the total number of hyperlinks and identify the broken
ones, all embedded hyperlinks need to be extracted and validated.
We separated the hyperlinks into two categories: in-site hyperlinks
that point to resources inside the same web server, and out-site
hyperlinks that point to resources outside. The size of the web
and the huge number of embedded hyperlinks demand automatic
instead of manual hyperlink extraction and validation. We imple-
mented an automated web defect density evaluation tool, opti-
mized to minimize the network traffic by the following:

� Eliminate most of the need to send in-site hyperlink request for
validation by using a hash table. For each hyperlink-able objects
in the web server, a corresponding hyperlink is created and
stored in a hash table. In-site hyperlink validation looks up the
hash table first. It sends a HTTP request only if the hyperlink
cannot be found in the hash table. This eliminates more than
95% of the internal HTTP requests.

� HEAD method is used when sending HTTP requests for out-site
hyperlinks, because the returned ‘‘head” information contains
enough information for hyperlink validation. In most circum-
stance, it reduces more than 99% of the web traffic by avoiding
requests for the whole contents the hyperlinks point to.

The SMU/SEAS website, with 165,150 source files as of 2006, is
used as the case study for web defect density measurement (Li,
2008). The results are given in Table 5, showing a apparent differ-
ence between the in-site and out-site web defect densities.
Changes to resources that the out-site hyperlinks point to are made
by different teams thus highly unpredictable to local website
571

572

573

574

575

576

577

578

579

Table 5
Defect density measurement for SMU/SEAS.

In-site Out-site Overall

hyperlinks 1,113,620 41,112 1,154,732
broken hyperlinks 23,686 6935 30,621
Defect density 2.1% 16.9% 2.7%

Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

F

maintainers, resulting in more broken hyperlinks and significantly
higher defect density for out-site hyperlinks than for the in-site
category.

In this case study, we also identified half of the source files as
from a self-contained subsite in SMU/SEAS. Further investigation
reveals that the subsite is a copy of online Java 5 reference. There-
fore, we separated SMU/SEAS into two subsites: Java 5 online ref-
erence subsite, with 82,807 files and 944,251 hyperlinks, and the
rest, with 82,343 files and 210,481 hyperlinks. The results are gi-
ven in Table 6, consistently showing the quality superiority of in-
site over out-site hyperlinks. The results also indicate quality dif-
ference for contents developed by different groups: the subsite
developed by SMU/SEAS staff members and individuals has much
higher defect density than the Java 5 subsite developed by Sun
Microsystems Inc. Our web defect density metric captures and
quantifies such expected quality differences.

6. Long-term reliability: a business perspective

Both web defect density measure and web reliability measure
using log files only give us a snapshot of internal quality or reliabil-
ity over a relatively short period of time. Information sensitivity
and size of source files and log files also make them difficult to ob-
tain and use over extended periods of time. Therefore, we need to
explore new ways to perform quantitative web long-term reliabil-
ity analysis that can help web site owners and managers evaluate
organization’s capability to produce quality software and drive
continuous improvement (Chrissis et al., 2006; Tian, 2005), which
would also be of interests to their business clients and long-term
customers.

Fortunately, more and more websites have adopted web log
analysis software into their web administration tool collection,
use it by default, and publish reports online. For instance, Analog,
one of the most popular web administration tools, analyzes web
server log files, extracting such items as client’s IP addresses, URL
paths, processing times, user agents, referrers, etc., and grouping
them to produce various reports. Because these reports are in sum-
mary format without sensitive information, their accessibility is
less problematic. The web statistics reports generally include the
following information:

� General Summary contains some overall statistics about the log
data being analyzed, including the number of requests, the num-
ber of requests for pages, the number of distinct hosts, and the
amount of data transferred in bytes.

� Several reports about requested contents, including statistics
about downloaded files (Request Report), directories for the
downloaded files (Directory Report), file types (File Type
Report), file sizes (File Size Report), HTTP status codes of all
requests (Status Code Report).

� Several variations of client/user characterization, including sta-
tistics about organizations the client computers registered
under (Organization Report), Internet domains for client com-
puters (Domain Report), pages linked to local files (Referrer
Report), servers those referrers were on (Referring Site Report),
operating systems used by visitors (Operating System Report),
and search terms people used to find the site (Search Word
Report).
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
Web

Original text:
Inserted Text
The

Original text:
Inserted Text
A

T
E
D

P
R

O
O

F

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

Fig. 2. Monthly failure rate for SMU/SEAS.

Table 7
Functional faults discovered for LTC.

Fault class HTTP categories % of total

Service/system interfaces 200/300 33.13
Graphical user interface 200/300 22.89
Code logic, compu. & algo. 200/300 20.48
Missing files 404 10.63
Missing verbiage 200/300 9.04
Missing links 200/300 2.63
Cache 200/300 1.20
Session/cookies 200/300 0.00
Concurrence/multi. users 200/300/400/500 0.00
Env./config./deployment 200/300/400/500 0.00
Operational behavior 200/300 0.00
HTTP failures except 404 400/500 0.00
Database 200/300 0.00
All 200/300/400/500 100.00

Table 8
Top classes of faults (collective fault view) for LTC.

Class of faults % of total

Missing files - HTTP 404 failures 33.64
System/services interface 25.34
Graphical user interface 17.50
Logic, computation, and algorithm 15.67

Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 7

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

For long-term reliability analysis, web usage and failure infor-
mation needs to be extracted from these statistics reports. We
developed a web statistics report parser for this purpose (Li,
2008). Monthly reports from 2004 to 2006 produced by Analog
for SMU/SEAS were processed to calculate monthly reliabilities in
Fig. 2. Similar to in Section 4, only requests returning status code
404 are considered as failures, and the same operational reliability
definition based on Nelson model (Nelson, 1978) is used to nor-
malize monthly failures by corresponding hits. Fig. 2 indicates that
the failure rate of website SMU/SEAS became worse over time from
year 2004 to 2005, which was accompanied by the migration of the
website to new design and functionalities.

7. Functional defects and their impact: development view

For dynamic web applications that have become increasingly
integrated into business strategies for companies, an important
category of problems is the functional defects that may only be de-
tected in development or maintenance cycle but not through ana-
lyzing web server logs. These problems would require a ‘‘deeper”
analysis (He et al., 2007) of problematic behavior and problem
sources. The analysis results can be merged with those from ana-
lyzing web server logs to produce comprehensive and meaningful
results for dynamic web applications.

7.1. Functional defects and collective fault view

Each recorded defect in defect repositories corresponds to a un-
ique software fault in the dynamic web application. Table 7 sum-
marizes the distribution of such functional faults for LTC,
together with their corresponding HTTP categories. We found that
only 10.63% of the recorded problems from the defect-tracking tool
were also found in the server web logs as missing files. This insig-
nificant overlap between data from defect repository and from web
server logs indicates that we need both to produce comprehensive
and meaningful results for such dynamic web applications.

To build the collective fault view, we need to merge functional
defect data with those extracted from web server logs. As de-
scribed in Section 5, failures in web server logs can be easily trans-
formed into faults by identifying unique causes, or individual
missing files for this case. Then, the missing file faults can be di-
rectly merged with the functional faults to build the collective fault
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
view. We need to normalize the missing file and functional fault
classes by the total number of defects after removing duplicate en-
tries. Table 8 shows the collective fault view for LTC.

7.2. Functional defect impact analysis and collective failure view

If we evaluate the potential impact of functional faults based on
defect severity and likely usage scenarios, we could obtain corre-
sponding partial defect data in the failure view as well. When com-
bined with defect data from web server logs, it give us a collective
failure view, and provides data input for our focused testing and
reliability improvement (Alaeddine and Tian, 2007).

Besides the raw defect data, the fault exposure list and the oper-
ational profile need to be constructed to help us assess fault im-
pact. The functional defects are divided into categories based on
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
Development

T
632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

Table 10
Operational profile and number of transactions for LTC.

Operation Probability # of transactions

New order 0.10 588
Change order 0.35 2058
Move order 0.10 588
Order status 0.45 2646

Table 9
Defect exposure list.

Potential impact Description Weight

Showstopper Prevents the completion of a central requirements 100%
High Affects a central requirement and there is a workaround 70%
Medium Affects non-central requirement and there is no workaround 50%
Low Affects non-central requirement for which there is a workaround 20%
Exception Affects non-conformity to a standard 5%

8 Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

the potential impact, and weight assigned to each of these catego-
ries by domain experts in Table 9. The operational profile (OP) is a
quantitative characterization of how a software is or will be used in
field by target customers and users (Musa, 1998), such as given by
the first two columns of Table 10 based on available customer
usage data. Each recorded functional defect is associated with a
specific transaction or operation in the OP and a specific defect
type. In practical applications, the combination of OP operation
and defect type will uniquely identify recorded defects. The steps
involved in this fault-failure mapping are:

1. Find the number of hits per server per day and calculate the
total number of transactions based on the data from web access
logs. For LTC, the number of hits was 235,142 per server per day
with an estimated 40 hits per transaction on average. Therefore,
the number of transactions per server per day is 235,142/40 =
5880.

2. Multiple the total number of transactions calculated above by
the defined operational profile to obtain the number of transac-
tions processed every day for each operation, which yields the
results in Table 9 for LTC.

3. Multiply the number of transactions for each operation calcu-
lated above by the defined exposure list to calculate the failure
frequency (impact) of the specific fault identified by the opera-
tion in OP and the defect type. Table 11 shows the failure view
of the order status for LTC, and similar results can be obtained
for other operations to build the complete failure view of the
defects.

These steps map individual functional faults into potential
failure instances, effectively providing an assessment of fault im-
pact under this usage environment defined by the operational
profile and product internal structure reflected in the fault expo-
sure list.

We finally merge and sort information about missing file fail-
ures and functional failures to generate the fault impact ranking
based on failure frequency. Table 12 shows the top individual
710

711

712

713

714

715

716

717

718

719

Table 11
Failure view of order status for LTC.

Operation Potential impact Weight (%) # Transactions Failure frequency

Order status Showstopper 100 2646 2646
Order status High 70 2646 1852
Order status Medium 50 2646 1323
Order status Low 20 2646 529
Order status Exception 5 2646 132

Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

Ffaults for LTC ranked by their corresponding failure frequencies.
We noticed that a large number of failures were caused by a small
number of faults with high failure frequencies. By fixing these
faults, total failures can be reduced dramatically. For example, by
fixing the top 6.8% faults, the total failures were reduced by about
57%. The corresponding reliability improved from 0.9356 to
0.9723. Similarly, when we progressively focus on top impact
faults, a overwhelming share of total failures can be eliminated
(Alaeddine and Tian, 2007).

8. Measurement framework and its usage

Our overall measurement framework and its four major compo-
nents are summarized in Table 13. Within this general framework,
our four measurement alternatives are derived from four different
perspectives to offer their own unique benefits to different
stakeholders:

� Quality from a user’s view is measured by web failures and reli-
ability. Overall failure data extracted from web server logs can
be examined for trend and distribution. Operational reliability
can be measured by the failure rates, or number of failures per
operational instances measured by the number of requests,
bytes transferred, users, or sessions. In addition, potential for
reliability improvement can be measured by fitting unique fail-
ure data over operational instances to existing SRGMs. All these
measurements are directly meaningful to web users and can
help web contents and service providers in their maintenance
activities.

� The internal quality from web maintainer’s point of view is mea-
sured by web defect density based on source file analysis. It can
help drive web quality improvements by focusing on areas of
high defect density for defect fixing and other maintenance
activities. Its use can help us remove defects before additional
customers encounter related problems. Therefore, this measure
is also indirectly meaningful to external customers and users.

� Quality from web host’s and manager’s long-term business view
is measured by long-term web reliability based on analysis of
available web statistics reports, which also reflects perceived
website quality by business clients or long-term customers.

� Quality from developer’s view for dynamic web applications is
measured by functional faults extracted from defect reposito-
ries. These defects discovered during web application develop-
ment and maintenance activities reflect problems with
extensive backend facilities and dynamic contents in providing
the web capabilities and services to target customers. The insig-
nificant overlap we observed between data from defect reposito-
ries and from web server logs led us to use both in our collective
fault and failure analysis to produce comprehensive and mean-
ingful results for such applications. The procedure we developed
to map functional faults to operational failures allows us to pri-
oritize overall defect fixing effort in the most cost effective way
in terms of delivered reliability improvement. This reliability
improvement would directly benefit customers and users of
such dynamic web applications (dwa.user in Table 13).
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
10

Original text:
Inserted Text
9

Original text:
Inserted Text
235142/40

T
D

P
R

O
O

F

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

Table 12
Individual fault impact ranking for LTC.

Rank Response code Fault Failure frequency

1 404 /images/dottedsep.gif 5805
2 404 /images/gnav_redbar_s_r.gif 3687
3 404 /images/gnav_redbar_s_l.gif 3537
4 200/300 Order status – sys interface – showstopper 2646
5 404 /includes/css/images/background.gif 2593
6 200/300 Change order – logic – showstopper 2058
7 200/300 Order status – sys interface – high 1852
8 200/300 Order status – logic – high 1852
9 200/300 Change order – logic – high 1441
10 200/300 Change order – user interface – high 1441
11 200/300 Order status – sys interface – medium 1323
12 200/300 Order status – logic – medium 1323
13 200/300 Order status – user interface – medium 1323
14 200/300 Change order – sys interface – medium 1029
15 200/300 Change order – logic – medium 1029
16 200/300 Change order – user interface – medium 1029
17 404 /includes/css/nc2004style.css 721

Table 13
Overall summary of web quality and defect measurements.

Measurement Perspective Data sources Case studies

Failures & Reliability customer/user/info.seeker Server logs All four
Defect density Maintainer Source files SMU/SEAS
Long-term reliability host/manager/bus.client statistics reports SMU/SEAS
Functional faults/failures Development/dwa.user Defect repository & server logs LTC

Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 9

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

The evolving nature of the web requires us to focus on measur-
ing maintenance. All four measurements in this paper capture web
maintenance information, either as the coarse-grain summary
information for long-term reliability measurement, source files
and embedded hyperlinks as maintenance targets for defect den-
sity measurement, and in-field usage and problems in web server
logs for the other two above. In addition, functional defects from
development and maintenance activities for dynamic web applica-
tions are used for functional fault and failure measurement. All our
measurements are defined for web maintenance at different levels
of granularity, with functional defect measurement also applicable
to web application development activities.

The data availability largely determines the applicability of our
measurements to different websites and applications: sensitive
user information is recorded in web server log files, making them
available only to authorized analysts but not to the general public.
Similar to defect data for traditional software systems, web func-
tional faults are only accessible to web development and mainte-
nance teams and parties they authorize. But unlike source code
of traditional software systems, web server source files are at least
partially accessible to the public due to the blending of source files
with navigation facilities in HTML and other documents. Web sta-
tistics reports contain no sensitive data and are sometimes pub-
lished online as part of the website.

Once the data are obtained, measurement and analysis activi-
ties performed in this paper, including data extraction, processing,
modeling, and result analysis, are all supported by software tools
and facilities we implemented, effectively removing one of the ma-
jor obstacles to the implementation of our measurement strategy.
The remaining implementation issues and related cost include: (1)
the large storage space and processing required for reliability mea-
surement, (2) some online hyperlink validation overhead for defect
density measurement, and (3) additional input from users and ex-
perts in the form of operational profiles and fault exposure assess-
ments used to convert functional faults to operational failures in
functional fault measurement and related failure analysis. In prac-
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
Etical applications, the data availability and implementation cost is-
sues need to be resolved by balancing the expected benefit from
such measurement and analysis activities against additional cost
and effort needed to obtain the required data and to produce the
desired analysis results.

To use our measurement framework, we recommend a custom-
ized approach based on stakeholder identification and related anal-
ysis of stakeholder concerns. For information seekers or casual
users, the only meaningful defect-related measurement of web
quality would be its overall reliability. They would only be con-
cerned about how likely their requests will be handled without a
problem, or that the information they seek is acquired and deliv-
ered. For business clients or long-term customers, long-term reli-
ability and the overall reliability trend would be of interests too,
in addition to the current reliability of the web site or the web
application. In addition, they may be indirectly interested in know-
ing the defect density and number and/or density of functional de-
fects because such internal defects have a direct impact on the
observed failures and it takes time and resources to fix these prob-
lems. Therefore, a cost-benefit analysis might be needed to balance
their desire for higher quality web sites and web applications
against the additional cost it might incur.

For people on the producer side, the failure and reliability mea-
surements should also be their concern because their direct linkage
to the perceived web site or web application quality by customers,
users, and business clients. The long-term viability of such web-
based businesses or services depends on these measurements over
time, as also reflected in the long-term reliability. However, more
directly and for specific projects or for a short period of time, the
internal defect related measures such as defect density, and addi-
tionally functional defects for dynamic web applications, are
needed because their direct relationship to defect fixing cost and
their important role in process control and project management.
The defect impact analysis describe in this paper would bridge
the gap between this internal and external perspectives of web site
and web application quality.
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
Web

Original text:
Inserted Text
Sensitive

Original text:
Inserted Text
1)

Original text:
Inserted Text
2)

Original text:
Inserted Text
3)

Original text:
Inserted Text
long term

Original text:
Inserted Text
long term

Original text:
Inserted Text
long term

T

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

925
926
927
928

10 Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

Therefore, depending on different stakeholders different roles,
responsibilities, and concerns, an appropriate subset of measures
defined in this paper can be selected. Then data sources can be
identified, measurement activities can be carried out, measure-
ment results can be analyzed, including the possible ‘‘deep-anal-
ysis” for dynamic web applications, and feedback and
recommendations can be provided. For example, information
seekers or casual users would be satisfied to know that the over-
all reliability of target web sites are sufficiently high to allow
them to continue using these sites in the future. Clients and
long-term customers may be encouraged to work together with
web site maintainers and managers to fix relevant and high-im-
pact problems identified through defect density and long-term
reliability measurement and analysis to ensure and improve
web reliability and long-term survivability of web sites and
web-based businesses. For dynamic web applications, the mea-
surement and analysis of both functional defects related to
underlying database and business logic and non-functional de-
fects related to web layer will enable development teams to focus
on high-impact faults to prioritize limited resources to achieve
maximal reliability improvement. Such improved reliability
would ensure customer satisfaction and long-term business
viability.

9. Conclusions and perspectives

The general benefit of performing web quality measurement is
to provide quantitative quality assessments, identify problematic
areas, and drive continuous improvement. Towards this end, we
defined appropriate measurements based on different stakehold-
ers’ perspectives: quality from a user’s view is measured by web
failures and reliability based on log file analysis, which are directly
meaningful to web users and can help web contents and service
providers in their maintenance activities. The internal quality
from web maintainer’s point of view is measured by web defect
density based on source file analysis, which can be used to help
drive web quality improvements by focusing on areas of high de-
fect density for defect fixing and other maintenance activities.
Quality from web host’s and manager’s long-term business view
is measured by long-term web reliability based on analysis of
available web statistics reports, which also reflects long-term cus-
tomer’s perception of website quality. Quality from developer’s
view for dynamic web applications is measured by functional
faults extracted from defect repositories, and the procedure we
developed to map them to operational failures allows us to prior-
itize overall defect fixing effort in the most cost effective way in
terms of delivered reliability improvement that is meaningful to
target customers and users.

With the measures defined above, we also identified the data
sources and obtained necessary data for four diverse web sites:
one academic website SMU/SEAS, one open source development
website KDE, one online catalog showroom LC for a small com-
pany, and one commercial website LTC for a large telecommunica-
tions company with extensive dynamic contents for e-Commerce
applications. The measurement results and the overall analysis re-
sults were provided as feedback to web site owners and other
stakeholders. The impact of using these measurements and analy-
sis results were also described, such as the accelerated defect dis-
covery and reliability improvement in Section 4 and significant
failure reduction by focusing on high-impact faults in Section 7.
The positive results from these case studies demonstrated the
applicability and effectiveness of our approach.

These measurements have the potential to form an synergistic
measurement framework, with possible extensions to include
other quality measurements and analysis techniques, for a wide
Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
E
D

P
R

O
O

F

variety of web contents and service providers to measure and im-
prove web quality to better satisfy their customers. The initial suc-
cess allows us to continue expanding this work to related activities
to help our existing partners measure and improve the quality for
their web sites and their dynamic web applications. It also gives us
the opportunity to engage new partners in similar activities that
expanded the application environments as well as important is-
sues being addressed. We are also working to extend the software
tools and facilities we implemented for measurement and analysis
activities described in this paper to form a tool suite of enhanced
capability and usability to help our current and future partners
achieve their goals of web quality improvement and customer
satisfaction.

Acknowledgement

The work reported in this paper was supported in part by NSF
Grants CCR-0204345 and IIP-0733937. We thank Merlin Wilkerson
and Dirk Mueller for their help in gathering and interpreting the
web logs for the SMU/SEAS and the KDE websites respectively.
We thank the anonymous reviewers for their constructive sugges-
tions, particularly in summarizing our measurement framework
and outlining its customized usage by different stakeholders.

References

Alaeddine, N., Tian, J., 2007. Analysis of anamalies and failures in dynamic web
applications. In: Proc. 11th IASTED Int. Conf. on Software Engineering and
Applications, pp. 385–290.

Bélanger, F., Fan, W., Schaupp, L.C., Krishen, A., Everhart, J., Poteet, D., Nakamoto, K.,
2006. Web site success metrics: addressing the duality of goals.
Communications of the ACM 49 (12), 114–116.

Chrissis, M.B., Konrad, M., Shrum, S., 2006. CMMI: Guidelines for Process Integration
and Product Improvement, second ed. Addison-Wesley/Pearson Educationr,
Boston, MA.

Fenton, N., Pfleeger, S.L., 1996. Software Metrics: A Rigorous and Practical Approach,
second ed. PWS Publishing, Boston, MA.

Goel, A.L., Okumoto, K., 1979. A time dependent error detection rate model for
software reliability and other performance measures. IEEE Transactions on
Reliability 28 (3), 206–211.

He, B., Patel, M., Zhang, Z., Chang, K.C.-C., 2007. Accessing the deep web.
Communications of the ACM 50 (5), 94–101.

IEEE, 1990. IEEE Standard Glossary of Software Engineering Terminology. No. STD
610.12-1990. IEEE.

Kallepalli, C., Tian, J., 2001. Measuring and modeling usage and reliability for
statistical web testing. IEEE Transactions on Software Engineering 27 (11),
1023–1036.

Kan, S.H., 2002. Metrics and Models in Software Quality Engineering, 2/e. Addison-
Wesley, Reading, MA.

Koru, A.G., Tian, J., 2004. Defect handling in medium and large open source software
projects. IEEE Software 21 (4), 54–61.

Li, Z., 2008. Web reliability analysis and improvement. Ph.D. thesis, Southern
Methodist University, Dallas, Texas, U.S.A.

Ma, L., Tian, J., 2007. Web error classification and analysis for reliability
improvement. Journal of Systems and Software 80 (6), 795–804.

Musa, J.D., 1998. Software Reliability Engineering. McGraw-Hill, New York.
Nelson, E., 1978. Estimating software reliability from test data. Microelectronics and

Reliability 17 (1), 67–73.
Offutt, J., 2002. Quality attributes of web applications. IEEE Software 19 (2),

25–32.
Pfleeger, S.L., Hatton, L., Howell, C.C., 2002. Solid Software. Prentice Hall, Upper

Saddle River, New Jersey.
Thayer, R., Lipow, M., Nelson, E., 1978. Software Reliability. North-Holland, New

York.
Tian, J., 2005. Software Quality Engineering: Testing, Quality Assurance, and

Quantifiable Improvement. John Wiley & Sons Inc. and IEEE CS Press,
Hoboken, New Jersey.

Tian, J., Ma, L., 2006. Web testing for reliability improvement. In: Zelkowitz, M.V.
(Ed.), Advances in Computers, vol. 67. Academic Press, San Diego, CA, pp. 177–
224.

Tian, J., Rudraraju, S., Li, Z., 2004. Evaluating web software reliability based on
workload and failure data extracted from server logs. IEEE Transactions on
Software Engineering 30 (11), 754–769.

Jeff (Jianhui) Tian received a B.S. degree in Electrical Engineering from Xi’an Jiao-
tong University in 1982, an M.S. degree in Engineering Science from Harvard Uni-
versity in 1986, and a Ph.D. degree in Computer Science from the University of
easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
long term

Original text:
Inserted Text
long term

Original text:
Inserted Text
long term

Original text:
Inserted Text
high impact

Original text:
Inserted Text
long term

Original text:
Inserted Text
Perspectives

Original text:
Inserted Text
Quality

929
930
931
932

933
934
935
936Q1

Z. Li et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 11

JSS 8314 No. of Pages 11, Model 5G

2 June 2009 Disk Used
ARTICLE IN PRESS
Maryland in 1992. He worked for the IBM Software Solutions Toronto Laboratory
between 1992 and 1995 as a software quality and process analyst. Since 1995, he
has been with Southern Methodist University, Dallas, Texas, now as an Associate
Professor of Computer Science and Engineering, with joint appointment at the Dept.
U
N

C
O

R
R

E
C

T

937

Please cite this article in press as: Li, Z., et al. Multi-faceted quality and defect m
doi:10.1016/j.jss.2009.04.055
of Engineering Management, Information and Systems. His current research inter-
ests include software testing, measurement, reliability, safety, complexity, and
applications in commercial, web-based, telecommunication, and embedded soft-
ware and systems. He is a member of IEEE and ACM.
E
D

P
R

O
O

F

easurement for web software and source contents. J. Syst. Software (2009),

Original text:
Inserted Text
ACM.

	Multi-faceted quality and defect measurement for web software and source contents
	Introduction
	Basic concepts, definitions, and measurements
	Characterizing web challenges and opportunities
	Web characteristics and problem definition
	Information sources for problem analysis and quality measurement
	Websites for our case studies

	Web failures and reliability: a user’s perspective
	Preliminary analysis of common failures
	Measuring workload and assessing operational reliability
	Evaluating potential reliability improvement

	Web faults and defect density: a maintainer’s perspective
	Fault measurement and analysis
	Web defect density measurement

	Long-term reliability: a business perspective
	Functional defects and their impact: development view
	Functional defects and collective fault view
	Functional defect impact analysis and collective failure view

	Measurement framework and its usage
	Conclusions and perspectives
	Acknowledgement
	References

