SRE.2: TBRMs & Integrated SRE

- Experience with existing approaches
- TBRMs: Tree-based reliability Models
- Integrated SRE using TBRMs & others
Overview

- Reliability: Prob(failure-free operations)
 - \textbf{time domain}: for a specific period.
 \Rightarrow reliability growth models.
 - \textbf{input domain}: for a specific input set.
 \Rightarrow repeated sampling models.

- A new integrated approach: TBRMs
 - tree-based reliability models (TBRMs)
 - both input/time domain information.
 - data driven/sensitive partitions.
 - method: tree-based modeling (TBM).
 - risk focusing and remedial actions.
 - details: AIC paper (Tian 1998)
Product Environment

• Large (medium-reliable) products:
 ▶ Commercial: RDBMS, compilers, software tools and computing environments.
 ▶ Telecommunication products too.
 ▶ Size: Up to millions of LOC.
 ▶ Widely distributed/large user population.
 ▶ No precise operational profile.
 ▶ Process: roughly waterfall.

• Overall testing:
 ▶ Long testing period (2 ~ 18 months).
 ▶ Different testing sub-phases.
 ▶ System testing focuses on reliability.
 ▶ Test-until-it-breaks commonly used.
 ▶ Staffing level variations.
 ▶ Code base stability.
Testing Environment

- Scenario-based testing.
 - Shifting focus: learning/dependency.
 - Functionality-based scenario classes:
 - randomized workload
 - progression: complexity & intensity \uparrow
 - defect fixing and related runs
 - division among testers.

- Specific reliability analysis issues:
 - Scenario-based \sim random testing
 - due to parallelism and interleaving
 - Defect fixing effect:
 - no long-term dependency
 - short-term dependency \Rightarrow grouping (later)
 - Uneven faults \Rightarrow TBRMs
Needs and Constraints

- Need assessment and analysis:
 - Track test effort, progress and defect.
 - Reliability assessment and prediction.
 - Effective defect detection and removal.
 - Process and quality improvement.

- Environmental constraints:
 - Minimize cost & schedule risks.
 - Data availability and affordability.
 - Process refinement.
 - Maximize data utilization.

- Recommendation:
 new, evolutionary approach, with support.
Overall Solution

- Combine SRGMs and IDRMs into TBRMs.

- Analysis and control:
 - SRGMs (s/w rel. growth models).
 - TBRMs: tree-based reliability models.
 - Progress monitoring & exit criteria.

- Problem identification and correction:
 - Use of input domain information
 - IDRMs (input domain rel. models)
 - identify high risk areas
 - Automatic partitioning via TBRMs.
 - Remedial actions for improvement.
Applications: Overview

- Product coverage:
 - Commercial products from IBM.
 - Improvement over original process.
 - Evolutionary approach:
 1. individual techniques.
 2. integration and refinement.
 - Recent work with Nortel Networks.

- Scope of Engagement:
 - Data definition and collection.
 - Data visualization and analysis.
 - Test progress tracking.
 - Reliability tracking with SRGMs.
 - Reliability improvement with TBRMs.
Applications: Testing & Data

- Data and tracking:
 - Integration with schedule information.
 - Normalization effect.
 - Summary reports and visualization.
 - Consistency checking automation.

- Customer usage information gathering
 - Operational profile construction.

- Coverage and input-domain analysis:
 - Functionality/function/static/dynamic.
 - Different levels of coverage for different testing phases.
 - Focused coverage through TBRM.
SRGMs: Application Experience

- Time measurements: Fig.2 (Tian 1998)
 - calendar time.
 - execution time: Musa models.
 - logical time: runs, transactions, etc.

![Diagram showing cumulative testing days, cumulative workload or failures, cumulative transactions, cumulative execution minutes, cumulative runs, and cumulative failures.]

184 days, 453 runs, 1293047422 transactions, 835530 execution minutes, 130 failures.
SRGMs: Application Experience

- Model applicability and effectiveness:
 - calendar time models useless.
 - products A, B, and C: Fig.3 (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - exec. time models costly & sensitive.
 - product B Fig.6b (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - runs suitable for some products.
 - product B: Fig.6a (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - runs suitable for some products.
 - product D: Fig. 8a (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - runs suitable some products.
 - product D: Fig.8b (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - transactions for other products.
 - product E: Fig.9 (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - time measurement comparison
 - product E: Fig.5 (Tian 1998)
SRGMs: Application Experience

- Model applicability and effectiveness:
 - context sensitive modeling for sub-groups or sub-phases \(\Rightarrow \) TBRMs.
 - product B: Fig.7 (Tian 1998)
SRGM Conclusions

• Modeling result interpretation:
 ▶ Accuracy of models:
 – prediction: training & testing sets
 ▶ Product purity at exit.
 ▶ Bounded estimations: multiple models.
 ▶ Convergence of modeling results.

• Evolving to usage-based data/model:
 ▶ Assurance of homogeneity:
 – if ‘yes’, run-based data/model;
 – if ‘no’, transaction measurement.
 ▶ Suitable for input domain analysis.
 ▶ Also as cross validation for TBRMs.
Assessing Existing Approaches

- Time domain reliability analysis:
 - Customer perspective.
 - Overall assessment and prediction.
 - Ability to track reliability change.
 - Problem: how to improve reliability?

- Input domain reliability analysis:
 - Explicit operational profile.
 - Better input state definition.
 - Hard to handle change/evolution.
 - Problem: realistic reliability assessment and handling numerous data sets/partitions?
An Integrated Approach

- Combine strengths of the two.

- Using TBRM for individual modeling:
 - Input state: categorical information.
 - Each run as a data point.
 - Time cutoff for partitions too.
 - Data sensitive partitioning
 - Nelson models for subsets.

- Integrated reliability analyses:
 - TBRM: partitioned subset reliability.
 - Use both input and timing information.
 - Monitoring changes in trees.
 - Enhanced exit criteria.
 - SRGM: overall reliability near exit.
 - Integrate into the testing process.
TBM: Technique for Integration

• Basic ideas:
 ▶ TBM: tree-based models.
 ▶ Tree: nodes=data-set, edges=decision.
 ▶ Data: 1 response variable Y
 and n predictor variables X_1, \ldots, X_n.
 ▶ Construction: recursive partitioning.
 (controlled growth vs growing & pruning)

• Usage and applications:
 ▶ Basic usage: $Y = Tree(X_1, \ldots, X_n)$
 ▶ Applicability: mixed-types of data.
 ▶ Past applications: social sciences
 ▶ In SE: risk identification by Selby & Porter,
 Tian & Troster, etc.

• Details: Tian/SQE book Ch.21.
TBRM Simple Example

- 1 categorical predictor and 1 response:
 - Binary grouping for partitioning
 - Example: Fig 10 (Tian 1998)
TBRM Simple Example

- 1 numerical predictor and 1 response:
 - Binary operator (≥) for partitioning
 - Example: Fig 15 (Tian 1998)

Legend:
- s = succ rate
- n = # of runs
- attr < cutoff
- attr > cutoff
TBRM Simple Example

- 1 categorical predictor and 1 response:
 - Interpretation as piecewise linear model
 - Example continued: Fig 14 (Tian 1998)
TBRM Example

- n mixed predictors and 1 response:
 - full TBRM
 - Example: Fig 11 (Tian 1998)
TBRM in Integrated Analysis

- Tree-based reliability models (TBRMs) using all information:
 - Input domain partitioning information.
 - Testing results.
 - Timing information.
 - Each run as a data point.

- Model construction:
 - Response: Result indicator.
 - 1 for success, 0 for failure.
 ⇒ Nelson model for subsets.
 - Mapping to failure rate or MTBF.
 - Predictor: Timing and input states.
 - Data sensitive partitioning.
 - Key factors affecting reliability.
 - Homogeneity of product reliability.
Using Integrated Analysis

- Interpretation of trees:
 - Predicted response: success rate.
 - (Nelson reliability estimate.)
 - Time predictor: reliability change.
 - State predictor: risk identification.

- Monitoring reliability change:
 - Change in predicted response.
 - Through tree structural change.

- Risk identification and remedies:
 - Identify high risk input state.
 - Additional analysis.
 - Enhanced test cases.
 - Remedies for components.
TBRMs in Integrated Analysis

- Treatment of product bundles:
 - TBRM for individual products.
 - Dynamic change w.r.t. process needs.
 - SRGM (& TBRM) for bundle near exit.

- Risk identification:
 - High risk input sub-domains.
 - Additional analysis for the identified.
 - Guide for remedial actions.

- Results interpretation:
 - Progression of trees & tree types.
 - Usage as exit criteria.
TBRMs at Different Times

- Fig 12a (Tian 1998): an early TBRM.
 - high-risk areas identified by input
 - early actions to improve reliability
TBRMs at Different Times

- Fig 12b (Tian 1998): a late TBRM.
 - high-risk areas ≈ early runs
 - uniformly reliable ⇒ ready for release
Cross Validation

- Consistency with macro models:
 \[\Rightarrow\] Effects on cost, schedule, quality.

- Validate with reliability growth models:
 \[\Rightarrow\] Trend of reliability growth.
 \[\Rightarrow\] Stability of failure arrivals.
 \[\Rightarrow\] Estimated reliability.
 \[\Rightarrow\] Product purity level at exit.

- Process changes & improvements:
 \[\Rightarrow\] Failure detection and fault removal.
 \[\Rightarrow\] Long term effect on development.

- Ultimate test: in-field problems.
TBRM Result Comparison

- Fig 22.6 (p.384): TBRMs used in D
 - better reliability growth in D
 - compare to A, B, and C (no TBRMs)
TBRM Result Comparison

- Table 22.3 (p.384):
 quantitative comparison with ρ

<table>
<thead>
<tr>
<th>Purification Level</th>
<th>Product</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td></td>
<td>0.715</td>
<td>0.527</td>
<td>0.542</td>
<td>0.990</td>
</tr>
<tr>
<td>median</td>
<td></td>
<td>0.653</td>
<td>0.525</td>
<td>0.447</td>
<td>0.940</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
<td>0.578</td>
<td>0.520</td>
<td>0.351</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Where: $\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$

λ_0: failure rate at start of testing
λ_T: failure rate at end of testing
Integrated Approach: Implementation

- Modified testing process: Fig 18 (Tian 1998)
 - Additional link for data analysis.
 - Process change and remedial actions.
Integrated Approach: Implementation

- Tool support: Fig 20 (Tian 1998)
 - different types of tools
 - I/O and interconnection
Integrated Approach: Implementation

- Activities and Responsibilities:
 - Evolutionary, stepwise refinement.
 - Collaboration: project & quality orgs.
 - Experience factory prototype (Basili).

- Implementation:
 - Passive tracking and active guidance.
 - Periodic and event-triggered.
 - S/W tool support
Implementation Support

• Types of tool support:
 ▶ Data capturing
 – mostly existing logging tools
 – modified to capture new data
 ▶ Analysis and modeling
 – SMERFS modeling tool
 – S-PLUS and related programs
 ▶ Presentation/visualization and feedback
 – S-PLUS and Tree-Browser

• Implementation of tool support:
 ▶ Existing (IBM+others) tools: cost ↓
 ▶ New tools and utility programs
 ▶ Tool integration
 – loosely coupled suite of tools
 – connectors/utility programs
 – common depository: S-PLUS
Application Summary

- Tracking and input-domain analysis:
 - Effectiveness of visualization.
 - Problems with input-domain assessment.

- Time-domain analysis refinement:
 - Data normalization by runs/trans best.
 - Context sensitive modeling promising.

- Integrated approach using TBRM:
 - Guidance as well as assessment.
 - Risk focusing \Rightarrow reliability improvement.
 - Progression of trees.
 - Usage as exit criteria.
 - Cross validation.
Future Directions

• Implementation and deployment:
 ▶ Data: automated data capturing.
 ▶ OP: evolutionary approach.
 ▶ Integration: analysis and improvement.
 ▶ Use in different industrial environments.

• Exploration and improvement:
 ▶ Customize time/transaction measurement.
 ▶ Early indicators/predictive modeling.
 ▶ Customer environment/OP refinement.
 ▶ Integrate to life-cycle quality models.
 ▶ Management and cost modeling.
 ▶ Refinement of modeling techniques.

• Continued research at SMU and collaboration with our industrial partners.