Software Reliability and Safety CSE 8317 — Fall 2012

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.12f

SRE.2: TBRMs & Integrated SRE

- Experience with existing approaches
- TBRMs: Tree-based reliability Models
- Integrated SRE using TBRMs & others

Overview

- Reliability: Prob(failure-free operations)
 - b time domain: for a specific period.
 - ⇒ reliability growth models.
 - ▷ input domain: for a specific input set.
 - ⇒ repeated sampling models.
- A new integrated approach: TBRMs
 - b tree-based reliability models (TBRMs)
 - ▶ both input/time domain information.

 - → method: tree-based modeling (TBM).
 - ▷ risk focusing and remedial actions.

Product Environment

- Large (medium-reliable) products:
 - ▷ Commercial: RDBMS, compilers, software tools and computing environments.
 - ▶ Telecommunication products too.
 - Size: Up to millions of LOC.
 - ▶ Widely distributed/large user population.
 - ▷ No precise operational profile.
 - ▶ Process: roughly waterfall.

• Overall testing:

- \triangleright Long testing period (2 \sim 18 months).
- ▷ Different testing sub-phases.
- > System testing focuses on reliability.
- ▶ Test-until-it-breaks commonly used.
- Staffing level variations.

Testing Environment

- Scenario-based testing.
 - Shifting focus: learning/dependency.
 - Functionality-based scenario classes:
 - randomized workload
 - progression: complexity & intensity ↑
 - defect fixing and related runs
 - division among testers.
- Specific reliability analysis issues:
 - ▷ Scenario-based ~ random testing
 - due to parallelism and interleaving
 - ▷ Defect fixing effect:
 - no long-term dependency
 - short-term dependency \Rightarrow grouping (later)
 - Uneven faults ⇒ TBRMs

Needs and Constraints

- Need assessment and analysis:

 - ▶ Reliability assessment and prediction.
 - > Effective defect detection and removal.
 - > Process and quality improvement.
- Environmental constraints:
 - ▶ Minimize cost & schedule risks.
 - Data availability and affordability.
 - ▶ Process refinement.
 - ▶ Maximize data utilization.
- Recommendation:
 new, evolutionary approach, with support.

Overall Solution

- Combine SRGMs and IDRMs into TBRMs.
- Analysis and control:
 - > SRGMs (s/w rel. growth models).
 - → TBRMs: tree-based reliability models.
 - > Progress monitoring & exit criteria.
- Problem identification and correction:
 - ▶ Use of input domain information
 - IDRMs (input domain rel. models)
 - identify high risk areas

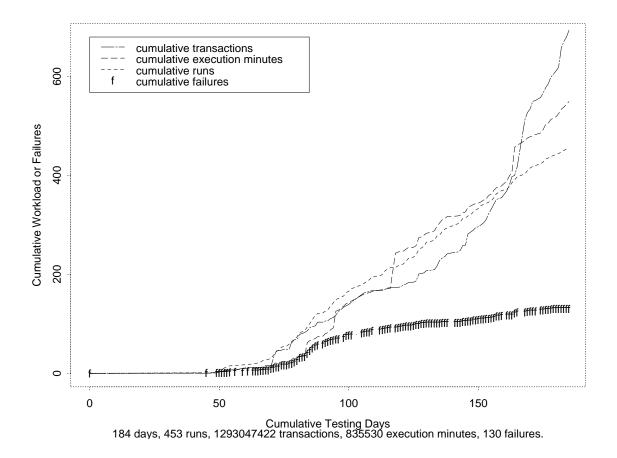
 - ▶ Remedial actions for improvement.

Applications: Overview

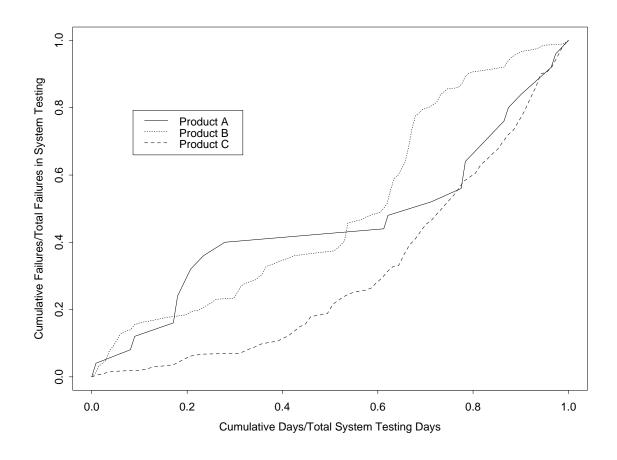
Product coverage:

- ▷ Commercial products from IBM.
- ▶ Improvement over original process.
- ▷ Evolutionary approach:
 - 1. individual techniques.
 - 2. integration and refinement.
- ▶ Recent work with Nortel Networks.

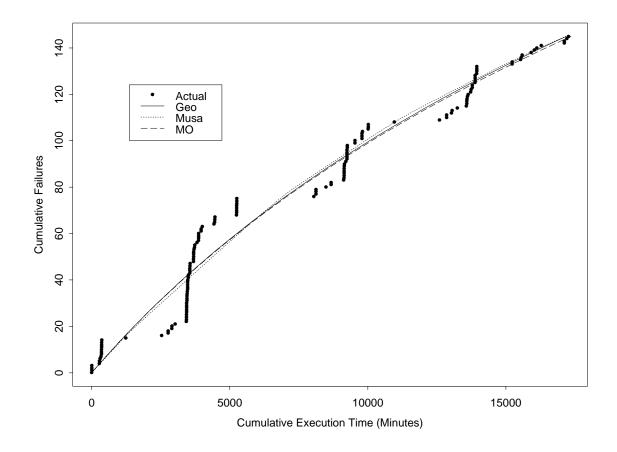
Scope of Engagement:

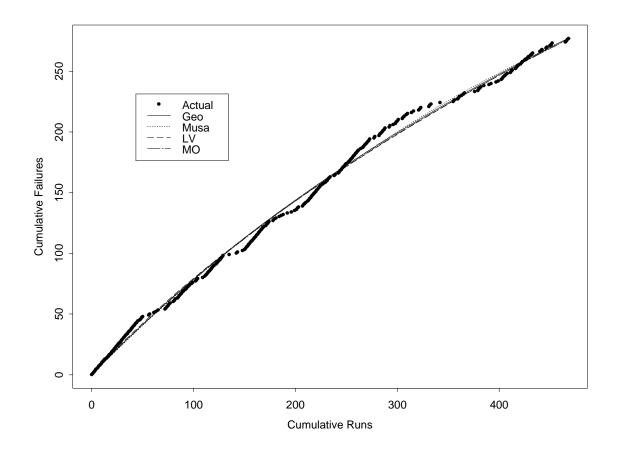

- ▶ Data definition and collection.
- Data visualization and analysis.
- ▶ Test progress tracking.
- ▶ Reliability tracking with SRGMs.
- ▶ Reliability improvement with TBRMs.

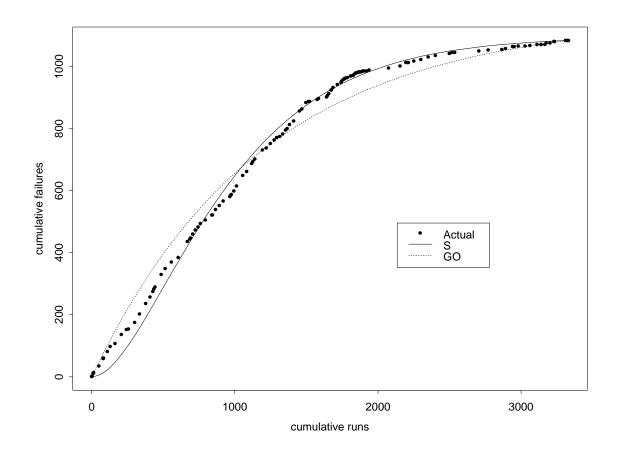
Applications: Testing & Data

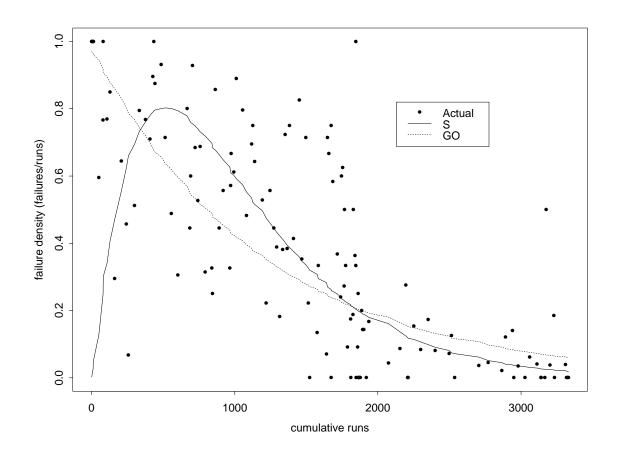

- Data and tracking:
 - > Integration with schedule information.
 - ▶ Normalization effect.
 - > Summary reports and visualization.
- Customer usage information gathering
 - Operational profile construction.
- Coverage and input-domain analysis:

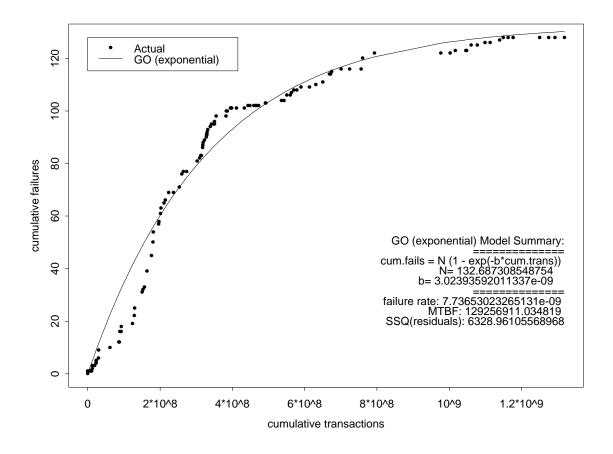
 - Different levels of coverage for different testing phases.
 - ▶ Focused coverage through TBRM.

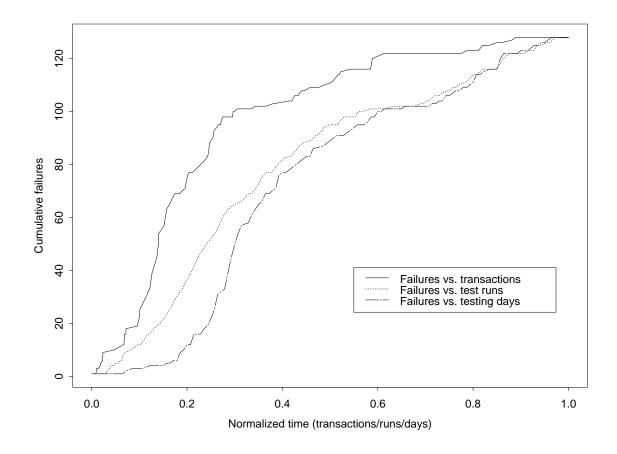

- Time measurements: Fig.2 (Tian 1998)
 - ▷ calendar time.
 - > execution time: Musa models.
 - ▷ logical time: runs, transactions, etc.

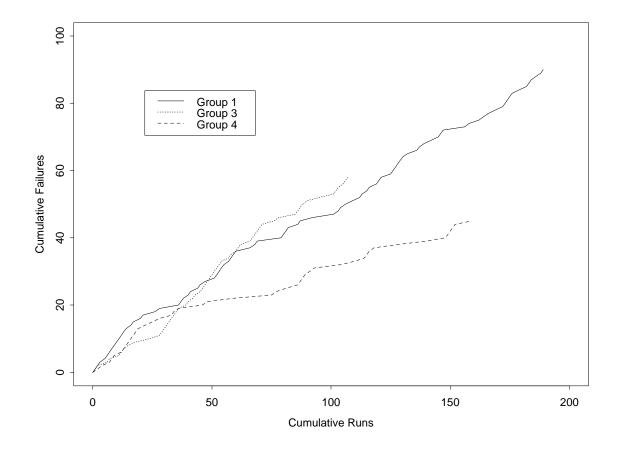

- Model applicability and effectiveness:
 - > calendar time models useless.
 - products A, B, and C: Fig.3 (Tian 1998)


- Model applicability and effectiveness:
 - ▷ exec. time models costly & sensitive.
 - product B Fig.6b (Tian 1998)


- Model applicability and effectiveness:
 - > runs suitable for some products.
 - product B: Fig.6a (Tian 1998)


- Model applicability and effectiveness:
 - > runs suitable for some products.
 - product D: Fig.8a (Tian 1998)


- Model applicability and effectiveness:
 - > runs suitable some products.
 - product D: Fig.8b (Tian 1998)


- Model applicability and effectiveness:
 - > transactions for other products.
 - product E: Fig.9 (Tian 1998)

- Model applicability and effectiveness:
 - > time measurement comparison
 - product E: Fig.5 (Tian 1998)

- Model applicability and effectiveness:
 - ▷ context sensitive modeling for sub-groups
 or sub-phases ⇒ TBRMs.
 - product B: Fig.7 (Tian 1998)

SRGM Conclusions

- Modeling result interpretation:
 - Accuracy of models:
 - assessment, model goodness-of-fit.
 - prediction: training & testing sets
 - ▷ Product purity at exit.
 - ▶ Bounded estimations: multiple models.
 - > Convergence of modeling results.
- Evolving to usage-based data/model:
 - Assurance of homogeneity:
 - if 'yes', run-based data/model;
 - if 'no', transaction measurement.
 - Suitable for input domain analysis.
 - ▶ Also as cross validation for TBRMs.

Assessing Existing Approaches

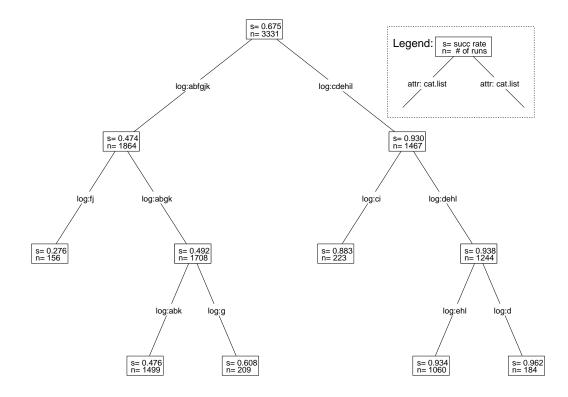
- Time domain reliability analysis:
 - > Customer perspective.
 - Overall assessment and prediction.
 - ▷ Ability to track reliability change.
 - ▶ Problem: how to improve reliability?
- Input domain reliability analysis:
 - > Explicit operational profile.
 - > Better input state definition.
 - ▶ Hard to handle change/evolution.
 - Problem: realistic reliability assessment and handling numerous data sets/partitions?

An Integrated Approach

- Combine strengths of the two.
- Using TBRM for individual modeling:
 - ▶ Input state: categorical information.
 - ▶ Each run as a data point.
 - > Time cutoff for partitions too.
 - Data sensitive partitioning
 - ⇒ Nelson models for subsets.
- Integrated reliability analyses:
 - > TBRM: partitioned subset reliability.
 - ▶ Use both input and timing information.
 - ▶ Monitoring changes in trees.
 - ⊳ Enhanced exit criteria.
 - ▷ SRGM: overall reliability near exit.
 - ▶ Integrate into the testing process.

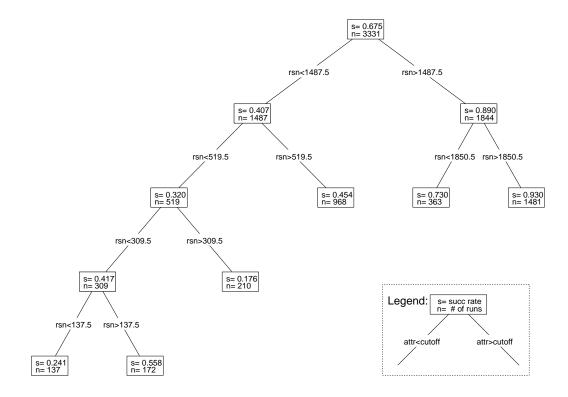
TBM: Technique for Integration

Basic ideas:

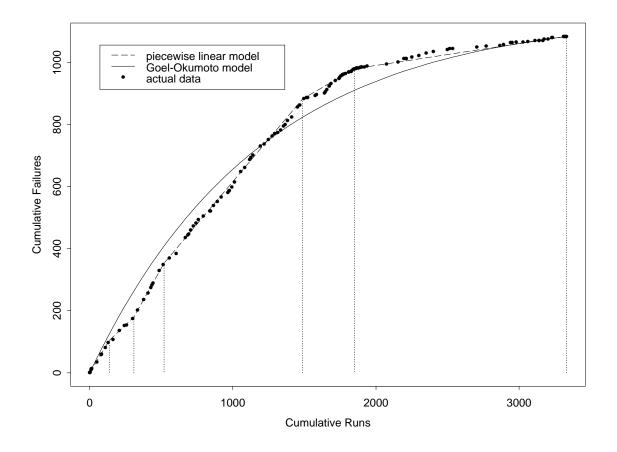

- → TBM: tree-based models.
- ▶ Tree: nodes=data-set, edges=decision.
- \triangleright Data: 1 response variable Y and n predictor variables X_1, \ldots, X_n .
- Construction: recursive partitioning.(controlled growth vs growing&pruning)

Usage and applications:

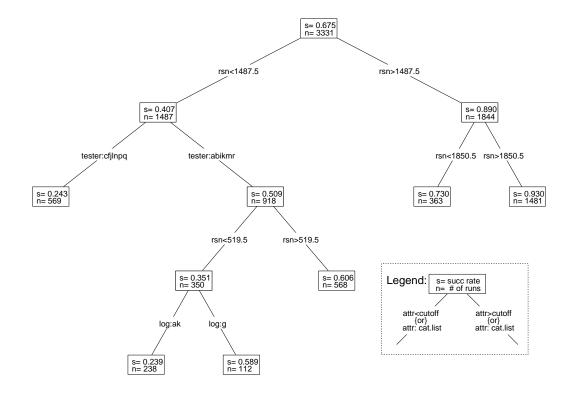
- \triangleright Basic usage: $Y = Tree(X_1, \dots, X_n)$
- Applicability: mixed-types of data.
- > Past applications: social sciences
- ▷ In SE: risk identification by Selby & Porter, Tian & Troster, etc.
- Details: Tian/SQE book Ch.21.


TBRM Simple Example

- 1 categorical predictor and 1 response:


TBRM Simple Example

- 1 numerical predictor and 1 response:
 - \triangleright Binary operator (\ge) for partitioning


TBRM Simple Example

- 1 categorical predictor and 1 response:
 - > Interpretation as piecewise linear model

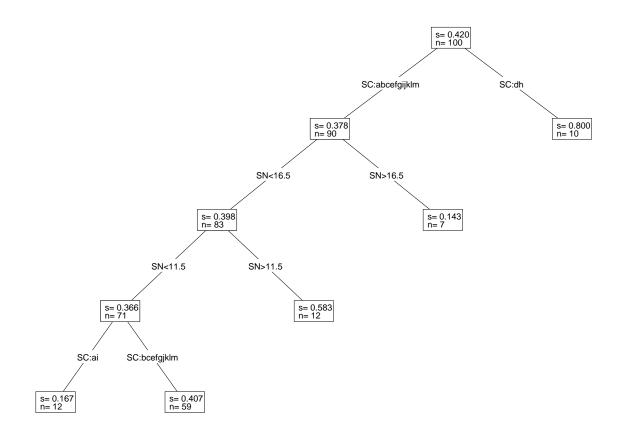
TBRM Example

- n mixed predictors and 1 response:
 - b full TBRM

TBRM in Integrated Analysis

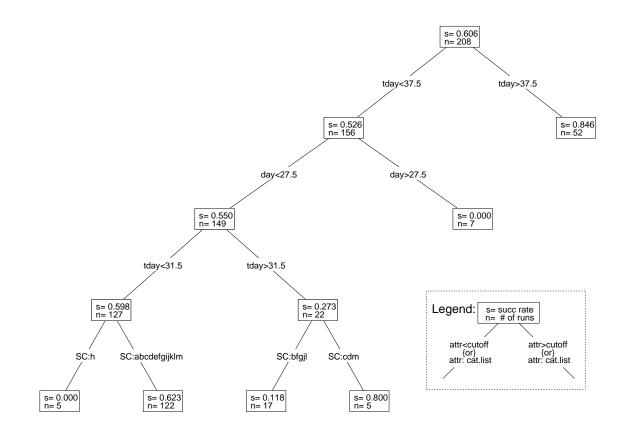
- Tree-based reliability models (TBRMs) using all information:
 - ▶ Input domain partitioning information.
 - ▶ Testing results.
 - > Timing information.
- Model construction:
 - ▶ Response: Result indicator.
 - 1 for success, 0 for failure.
 - ⇒ Nelson model for subsets.
 - Mapping to failure rate or MTBF.
 - ▶ Predictor: Timing and input states.
 - Data sensitive partitioning.
 - Key factors affecting reliability.
 - Homogeneity of product reliability.

Using Integrated Analysis


- Interpretation of trees:
 - Predicted response: success rate.(Nelson reliability estimate.)
 - > Time predictor: reliability change.
 - > State predictor: risk identification.
- Monitoring reliability change:
 - ▷ Change in predicted response.
 - ▶ Through tree structural change.
- Risk identification and remedies:
 - ▶ Identify high risk input state.
 - > Additional analysis.
 - ▶ Enhanced test cases.
 - > Remedies for components.

TBRMs in Integrated Analysis

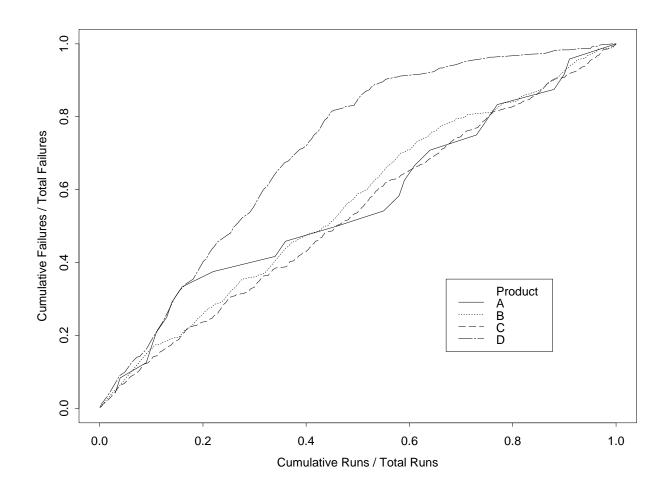
- Treatment of product bundles:
 - > TBRM for individual products.
 - Dynamic change w.r.t. process needs.
 - ▷ SRGM (& TBRM) for bundle near exit.
- Risk identification:


 - Additional analysis for the identified.
- Results interpretation:
 - ▷ Progression of trees & tree types.

TBRMs at Different Times

- Fig 12a (Tian 1998): an early TBRM.
 - ▷ high-risk areas identified by input
 - early actions to improve reliability

TBRMs at Different Times



- Fig 12b (Tian 1998): a late TBRM.
 - ▶ high-risk areas ≈ early runs
 - \triangleright uniformly reliable \Rightarrow ready for release

Cross Validation

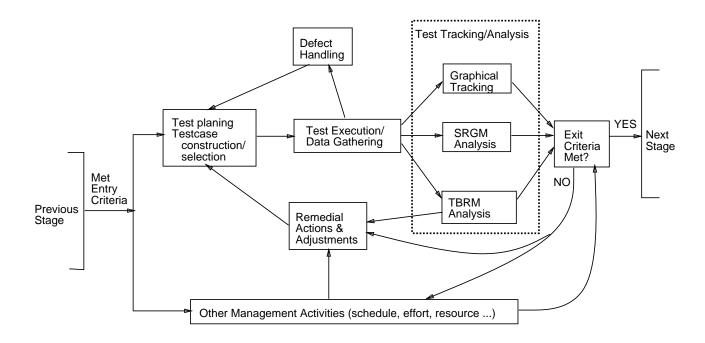
- Consistency with macro models:
 - \Rightarrow Effects on cost, schedule, quality.
- Validate with reliability growth models:
 - > Trend of reliability growth.
 - Stability of failure arrivals.
 - ▷ Estimated reliability.
 - ▷ Product purity level at exit.
- Process changes & improvements:
 - ▶ Failure detection and fault removal.
 - ▶ Long term effect on development.
- Ultimate test: in-field problems.

TBRM Result Comparison

- Fig 22.6 (p.384): TBRMs used in D
 - better reliability growth in D

TBRM Result Comparison

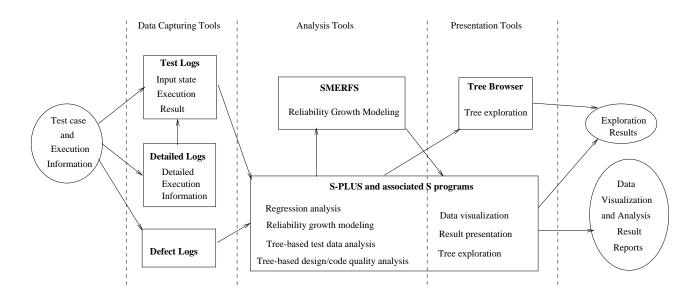
• Table 22.3 (p.384): quantitative comparison with ρ


Purification	Product			
Level $ ho$	А	В	С	D
maximum	0.715	0.527	0.542	0.990
median	0.653	0.525	0.447	0.940
minimum	0.578	0.520	0.351	0.939

Where: $\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0} = 1 - \frac{\lambda_T}{\lambda_0}$

 λ_0 : failure rate at start of testing λ_T : failure rate at end of testing

Integrated Approach: Implementation


- Modified testing process: Fig 18 (Tian 1998)
 - > Additional link for data analysis.
 - ▶ Process change and remedial actions.

Integrated Approach: Implementation

- Tool support: Fig 20 (Tian 1998)

 - ▷ I/O and interconnection

Integrated Approach: Implementation

- Activities and Responsibilities:
 - ▷ Evolutionary, stepwise refinement.

 - ▷ Experience factory prototype (Basili).
- Implementation:
 - ▶ Passive tracking and active guidance.
 - ▷ Periodic and event-triggered.
 - ⊳ S/W tool support

Implementation Support

- Types of tool support:
 - Data capturing
 - mostly existing logging tools
 - modified to capture new data
 - Analysis and modeling
 - SMERFS modeling tool
 - S-PLUS and related programs
 - Presentation/visualization and feedback
 - S-PLUS and Tree-Browser
- Implementation of tool support:
 - Existing (IBM+others) tools: cost ↓
 - New tools and utility programs
 - - loosely coupled suite of tools
 - connectors/utility programs
 - common depository: S-PLUS

Application Summary

- Tracking and input-domain analysis:
 - ▷ Effectiveness of visualization.
 - ▶ Problems with input-domain assessment.
- Time-domain analysis refinement:
 - Data normalization by runs/trans best.
 - Context sensitive modeling promising.
- Integrated approach using TBRM:
 - ▷ Guidance as well as assessment.
 - \triangleright Risk focusing \Rightarrow reliability improvement.
 - > Progression of trees.
 - Usage as exit criteria.

Future Directions

- Implementation and deployment:
 - ▶ Data: automated data capturing.
 - ▷ OP: evolutionary approach.
 - ▶ Integration: analysis and improvement.
 - ▶ Use in different industrial environments.
- Exploration and improvement:
 - ▷ Customize time/transaction measurement.

 - ▷ Integrate to life-cycle quality models.
 - Management and cost modeling.
 - ▶ Refinement of modeling techniques.
- Continued research at SMU and collaboration with our industrial partners.