Software Reliability and Safety CSE 8317 — Fall 2012

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.12f

SRE.4: Applications & Frontiers

- Non-traditional applications.
- Data treatment for better results
- Data clustering and DCRMs
- Research issues and improvement

Current SRE Assessment

- Reliability assessment:
 - ▷ IDRMs and SRGMs (TBRMs too)
 - ▷ Key: data reflect reliability
- Reliability prediction: SRGMs
 - ▷ OP accuracy?
 - Data appropriate/meaningful?
- Reliability improvement:
 - TBRMs and other emerging approaches
 Key: early risk identification
- More research needed.
 (Why we are working on related topics.)

SRE Applications

- Traditional applications:
 - ▷ "medium-reliable" systems.
 - ▷ Telecommunication software/systems:
 - Musa/AT&T/Lucent, and others.
 - Operation systems and system software:
 - DEC/HP/IBM/etc.
 - Commercial software systems:
 - IBM examples in this class.
 - ▷ Other similar applications.
- New application domains:
 - ▷ Adapting existing models/techniques.
 - Data selection/treatment necessary?
 - New models/techniques needed?

Web Testing and SRE

- SMU Project background:
 - ▷ NSF grants and industrial partners
 - ▷ research team headed by Tian.
 - ▷ key publications:
 - (Tian/Rudraraju/Li, 2004)
 - (Li/Alaeddine/Tian, 2009)
- Key activities and results:
 - ▷ Usage-based testing: UMMs
 - unified Markov models
 - details in Tian/SQE book: Ch.10.
 - ▷ Web SRE: time/activity measurement:
 - (Tian/Rudraraju/Li, 2004)
 - Web defect, reliability and other measurement:
 - (Li/Alaeddine/Tian, 2009)
 - ▷ also Web ODC: (Ma and Tian, 2007)

Web Characteristics and QA

- Web applications and QA:
 - ▷ Large, diverse, general population.
 - ▷ Document/information vs. computation.
 - ▷ Diverse usage patterns/environments.
 - ▷ Reliability one of the key concerns.
- Usage environment:
 - ▷ Traditional hardware/software env.
 - ▷ Network/midware/server/browser/etc.
 - ▷ Layered structure.
 - ▷ Failure analysis necessary.
- SRE and statistical testing appropriate.

Web Failure, QA, and Reliability

- Web failure: inability to deliver information or document required by a web user.
- Infrastructure failure
 - ▷ Host failure: hardware/OS.
 - ▷ Network failure: down/congested.
 - ▷ Browser failure: software problem.
 - ▷ Related hardware/software problems.
 - Existing hardware/software reliability
- Information source failure
 - Individual page problems
 - ▷ Overall reliability: focus here.
- User errors: beyond our control.

Web Logs and Usage/Reliability

- Access and error logs: Information source for usage modeling and reliability analysis (Tian/Rudraraju/Li, 2004)
- Access log: hits
 - ▷ loading a HTML file
 - ▷ loading graphics etc.
 - ▷ but not operations using local cache
 - ▷ specific information recorded at server
 - ▷ sample entries: Table 1
- Error log: problems
 - ▷ sample entries: Table 2
 - ▷ problem type: Table 3
 - ▷ similar info and format

Error Logs and Reliability Analysis

- Error logs
 - Detailed problem information
 - ▷ "failures" for reliability analysis
 - In conjunction with other measurements
 - ▷ When absent: use response code.
- Reliability analysis
 - Reliability by Nelson model
 - > Mean-time-between-failures

$$\mathsf{MTBF} = \frac{1}{f} \sum_{i} t_i$$

for usage time t_i

 \triangleright MTBF when t_i not available

$$\mathsf{MTBF} = \frac{n}{f}$$

 Reliability growth using SRGMs (software reliability growth models)

Case Studies

- Site, information sources, and tools
 - Site: www.seas.smu.edu
 - Information sources: access/error logs (Apache web server)
 - ▷ Analysis tools:
 - FastStat and Perl programs
 - Manual analysis also
- Cross-validation:
 - ⊳ www.kde.org.
 - ▷ Different types of web site.
 - ▷ Heavier traffic.

Case Study: Error Analysis

- General error analysis result:
 - ▷ Summary: Table 4
 - ▷ Types A through K, but two key types:
 - Type A: permission denied
 - Type E: file does not exist
- Further analysis of errors
 - Type A: may or may not be considered as failures
 - ▷ Type E: "failures"
 - ▷ Further analysis of Type E errors
 - ▷ Relating to usage information
 - Reliability analysis

- Error over time: Fig 1.
 - ▷ Ups and downs (calendar time)
 - Impact of traffic/workload
 - Conclusion: proper workload/usage measurement for reliability analysis
- Possible workload/usage measurements:
 - Hits: already done in (Kallepalli and Tian, 2001)
 - Bytes (some difficulties)
 - ▷ Sessions (\approx to data grouping)
 - ▷ Users (meaningful to service providers)
- Measurement results: Figs 3-7.

- Overall reliability:
 - Relating failures to usage
 - errors vs workload measurements
 - \triangleright Example plot: Fig 8
 - errors vs. bytes
- Reliability evaluation results:
 - ▷ Application of Nelson model.
 - ▷ Error rate: 0.0379 error/hit.
 - \triangleright MTBF = 26.6
 - \triangleright Reliability = 0.962
 - Results in other units possible
 - but need to be cautious.
 - ▷ Comparison: Table 5

- Reliability growth for statistical testing
- Hypothetical situation:
 - ▷ usage-based testing
 - immediate defect removal
 - ▷ studied over 26 days
 - ▷ calculated from error/access logs
 - ▷ computation: unique error sequence
- SRGM results:
 - ▷ GO model for errors vs. bytes: Fig. 10
 - Reliability growth: 74.8%
 (defect reduction)
 - ▷ Other results: Table 6.
 - ▷ Purification level ρ (from SRE.3, and SQE Ch.22)

- Cross validation using KDE data.
- Overall workload and reliability:
 - ▷ Profiles: Fig 11 (4 profiles)
 - Session profile: Fig 12 two variations
 (2 hr vs. 15 min)
 - only 2 hrs used for SMU/SEAS
 - ▷ Hourly traffic: Fig 13.
 - ▷ Overall results: Table 7.
 - Similar results (better reliability)
- Reliability growth:
 - ▷ GO model for errors vs. bytes: Fig. 14
 - $\triangleright \rho = 86.7\%$ to 88.9%
 - \triangleright consistency \uparrow and reliability growth \uparrow

Web SRE Summary

- What has been done?
 - Reliability assessment/prediction by analyzing both access and error logs
 - Case study to demonstrate viability and effectiveness
- SRE specific results:
 - ▷ Data and modeling from existing sources.
 - ▷ Good operational reliability assessment.
 - ▷ Reliability growth potential assessment.
 - \triangleright 2 diverse web sites \Rightarrow generalization.
 - Future research: change impact, risk identification, byte traffic measurement.

Data-Model Mismatch

- Data-model mismatch:
 - ▷ Assumption mismatch.
 - ▷ Data appropriate?
 - \Rightarrow data selection and/or treatment
 - Model appropriate?
 - \Rightarrow choose alternative model
 - \Rightarrow develop new model
 - Research community: new models (but often impractical)
 - Industry: model/data selection/treatment
 - ▷ Examples from SRE.4
- Data treatment:
 - Censoring techniques
 - Grouping/clustering techniques

Data Treatment

- Data censoring techniques:
 - ▷ Key idea: skip gaps in data
 ⇒ censored data reflects usage
 - ▷ Technique: K.-Y. Cai, IEEE Trans. Reliability 46(1):69-75, 1997.
- Data compression:
 - Compression/expansion vs skipping
 - ▷ Basis: coverage
 - less likely to fail if tested
 - coverage as multiplier
 - Fechnique: M.-H. Chen et al, IEEE Trans. Reliability 50(2):165-170, 2001.
- Works with individual data points directly.

Data Grouping

- Need for data grouping:
 - ▷ Already grouped from applications:
 - hourly/daily/weekly/monthly data
 - data collection practicality
 - ▷ Local fluctuations
 - Data dependencies
 - ▷ Use PFC instead of TBF models
- Basis for data grouping:
 - ▷ External clock/time (most of the existing work)
 ▷ Model (result) optimization

 – Schneidewind approach
 TSE 19(11):1095-1104, 11/1995
 ▷ Data clustering

DCRM

- General information/strategy:
 - ▷ Tian TSE 28(10):997-1007, 10/2002.
 - DCRM: DCRM1 + DCRM2 data cluster based reliability models
 - Automatic clustering
 - ▷ DCRM1: direct usage
 - DCRM2: use with existing SRGMs (grouped data as input)
- Basic ideas: How?
 - ▷ Clustering of homogeneous runs.
 - ▷ Data driven/sensitive partitions.
 - \triangleright Method: Tree-based modeling (TBM).

The Case for Grouping

- Scenario-based vs. random testing:
 - ▷ Parallelism/interleaving in testing.
 - ▷ Randomized workload.
 - ▷ Similar overall picture.
 - $\triangleright \Rightarrow$ Data grouping.
- Defect fixing and run dependencies:
 - ▷ Strong short term dependency.
 - ▷ Lack of long term dependency.
 - $\triangleright \Rightarrow$ Clustering.
- Develop DCRMs

DCRM Construction

- Clustering/grouping test runs:
 - ▷ By similar failure intensity.
 - Computation: Tree-based modeling (TBM) supported by S-PLUS.
- Generic procedure:
 - ▷ Identify period, runs, and time.
 - \triangleright Failure intensity = failure / time,
 - ▷ Simple algebraic mean for segment:

$$\frac{\sum_{j=1}^{n_i} f_{ij}}{n_i} = \frac{f_i}{n_i} = \lambda_i$$

▷ Weighted average for segment:

$$\frac{\sum_{j,l_i < d_j \le u_i} t_j \lambda_j}{\sum_{j,l_i < d_j \le u_i} t_j} = \frac{\sum_{j,l_i < d_j \le u_i} f_j}{\sum_{j,l_i < d_j \le u_i} t_j} = \frac{F_i}{T_i} = \Lambda_i$$

▷ Other: as special cases of above.

Model Usage and Performance

- Direct usage: DCRM1
 - ▷ Reliability for each segment.
 - ▷ Overall trend assessment.
 - ▷ Current reliability: last segment.
 - ▷ Prediction: extrapolation.
 - ▷ Risk/anomaly identification.
- DCRM1 performance:
 - \triangleright Goodness-of-fit: R^2
 - 304 vs. 6329 for Goel-Okumoto.
 - ▷ Prediction comparison:
 - use training and testing sets.
 - linear extrapolation.
 - good short term results
 - ▷ Key advantage: early/wide applicability

DCRMs vs Other Models

- DCRM1 vs IDRMs:
 - Partition by failure intensity in runs
 similar to Nelson model.
 - Partition by general failure intensity
 similar to Brown-Lipow model.
- DCRM1 vs SRGMs:
 - \triangleright Constant λ for given period
 - similar to Jelinski-Moranda model.
 - But variable steps in consecutive steps
 - similar to Littlewood-Verrall model.
 - \triangleright Non-function form for progression of λ 's
- PFC-SRGMs: used in DCRM2.

DCRM2

- DCRM2: SRGMs with grouped data (each segment as a data point)
- Choosing SRGMs for DCRM2:
 - ▷ Only PFC (FC) models usage
 - ▷ NHPP choices:
 - Goel-Okumoto (GO)
 - Musa-Okumoto (MO, log Poisson)
 - Schneidewind and data req.
 - S-shaped as descriptive model
 - ▷ GO and MO choices
- More about GO and MO choices:
 - Lower/upper bound on estimates
 - ▷ Past experience at IBM
 - Empirical data elsewhere

DCRM Performance

- Product and comparison points:
 - ▷ Products E (and D) from IBM
 - ▷ E: last 8 weeks
 - 7 point comparison for DCRM2
 - DCRM1,GO, MO, DCRM2.GO, DCRM2.MO
- Applicability:
 - DCRM1 clearly superior
 - ▷ Others about equal
- Goodness-of-fit:
 - DCRM1 clearly superior
 - ▷ Others about equal
 - ▷ Caution: use more important

DCRM Performance

- Reliability assessment:
 - DCRM1 not as stable but available early
 - Convergence of others
 - DCRM2 provide tighter bound (more stable also, see prediction)
- Reliability prediction:
 - DCRM1 only for short term (mixed results)
 - only one available early
 - Prediction accuracy tables
 - Direct comparison graphs
 - ▷ Conclusion: DCRM2 better
- Model stability: DCRM2 better

DCRM Summary

- Easily satisfiable assumptions:
 - ▷ Rough operational profiles.
 - ▷ No long term dependencies
 - but short term dependencies
 - ▷ Failure intensity clusters.
- Implementation and applications:
 - ▷ Model construction: S-PLUS.
 - ▷ Practical applications.
 - ▷ Better/wider applicability.
 - \triangleright Robust/stable results.
 - ▷ Further studies underway.

Other Data/Models

- Trend analysis:
 - ▷ Qualitative/visual inspection:
 - curvature (super-/sub-additive)
 - ▷ Quantitative analysis.
 - Avoid meaningless modeling results.
- Other data/models:
 - Reliability simulation:
 especially for mixed h/w-s/w systems
 - ▷ Composite models.
 - ▷ Fault seeding technique.
 - General models for correlated data:
 Goceva-Popstojanova and Trivedi, IEEE
 Trans. Reliability, 49(1):37-48, 3/2000.
 - ⊳ etc., Lyu book.

Improvement Strategies

- Traditional models/techniques:
 - ▷ Assessment/prediction focus.
 - ▷ Limited used in improvement.
 - ▷ Testing/QA as semi-separate.
 - ▷ (assessment in Module IV)
- TBRM and extensions:
 - ▷ TBRMs for risk identification.
 - ▷ Focused improvement during testing.
 - ▷ Extension to other phases:
 - analyze other (e.g., inspection) data
 - reliability composition

Other Research Topics

- Linking SRE with metrics/analysis.
 - ▷ Musa prescriptive models refinement.
 - ▷ Metrics-SRE: still separate
 - risk (problem-prone) identification
 - Quantitative linkage?
- Reliability composition:
 - ▷ Small scale: Hamlet/Mason/Woit work.
 - ▷ RE to requirement: Smidts work.
 - Work at SMU: OP-mapping, fault-injection, embedded systems.
- Reliability optimization.
 - ▷ Other factors: cost, schedule, etc.
 - ▷ Lyu/Rangarajan/van Moorsel work.

Other Topics: Dependability Maximization

- Recent work at SMU: Tian, Nair, Huang, Alaeddine, and Siok
- Dependability assurance (HISS):
 - Multi-attribute
 - Multi-component
 - ▷ General idea of diversity (in FT, etc.)
 - NVT key factor: independence
 - Dependability composition: NSF/MRI project at SMU/UTD/UNT
- Dependability maximization:
 - ▷ Data envelopment analysis (DEA)
 - Constrained maximization
 - output: multi-component/multi-attribute
 - input: effort/cost/etc.
 - Promising initial results and direction