
Software Reliability and Safety CSE 8317 (SSE.1) 1

Software Reliability and Safety

CSE 8317 — Spring 2015

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275

(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/∼tian/class/8317.15s

SSE.1: SSE Basics and SSP

• Motivation and Concepts

• Defining Embedded Systems

• Software Safety Program (SSP)

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 2

Software Safety Engineering

• SSE.1: SSE basics and SSP

⊲ SSE basics: “Safeware” Parts I-III

⊲ SSP (software safety program)

– “Safeware”, Part IV (Ch.11-18) overview

• SSE.2: Hazard analysis and resolution

⊲ Focus: accidents and pre-conditions

(hazards), not other failures

⊲ “Safeware” Ch.13-16 & SQE Ch.16.4

⊲ Identification and analysis

⊲ Resolution: elimination/reduction/control

• Formal verification related:

⊲ Main part: SSE.3, SQE Ch.15.

⊲ PSC: SSE.4, SQE Ch.16.5

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 3

Safety: Why?

• Risk in modern society:

⊲ Serious accidents:

– “Safeware” Appendix A-D

– medical/aerospace/chemical/nuclear/etc.

– more recent accident from diverse sources

⊲ Techniques for reducing risks

• Risk factors in industrialized society:

⊲ new technology ⇒ new hazard

⊲ increasing complexity

⊲ interdependency ⇒ exposure ↑

⊲ increasing amount of energy

⊲ automation ↑ of manual operations

⊲ increasing centralization and scale

⊲ increasing pace of tech. change

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 4

Computers and Risk

• Computer in safety-critical systems

⊲ controller/control subsystem:

– application-specific computer

– general-purpose computer

⊲ functionality and flexibility

⊲ fact of life

⊲ critical functions (later)

• Software safety: difficulties

⊲ continuous vs. discrete states

⊲ the “curse of flexibility”

– “Safeware” Fig.2.4 (p.35)

⊲ complexity and invisible interface

⊲ lack of historical usage information

⊲ pure SE approach inadequate ⇒ SSE

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 5

SSE: Pure SE?

• Pure SE (S/w Eng.) approach

⊲ Safety constraints ⇒ requirements

⊲ Carried/verified in development stages

⊲ Fig. 18.1 (a)

⊲ Basis: myths below.

• Software myths (“Safeware” Ch.2.2):

⊲ lower cost than other devices

⊲ software is easy to change

⊲ computers provide greater reliability

⊲ software reliability ↑⇒ safety ↑

⊲ testing/formal-veri. eliminate defects

⊲ reusing software ⇒ safety ↑

⊲ computers reduce risk over mechanical

systems

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 6

SSE: Problems and Solutions

• Assumptions and problems

⊲ Level of quality (LoQ) required

⊲ LoQ provided by existing practice (SRE?)

⊲ Fault-tolerant techniques

– particularly NVP, intrinsic problems

– LoQ still not enough

⊲ Formal verification

– LoQ/rare-events/scalability problems

• Problems and solutions:

⊲ Scalability and coverage

⊲ Correctness of everything?

⊲ Not focus on safety-related artifacts

⇒ SSE, particularly Leveson’s SSP

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 7

Basic Definitions

• Accident or mishap:

⊲ unplanned (series of) events

⊲ leading to unacceptable loss

- death, injury, illness

- equip./property/environment damage

⊲ excess energy/dangerous substance

⊲ computers relatively safe

⊲ but computer control ⇒ accidents

• Hazard:

⊲ a set of conditions leading to accidents

under certain environmental conditions

⊲ e.g.: guard gates at rail-crossing

⊲ safety focus: control factors

(vs. env. factors beyond control)

⊲ analysis and resolution ⇒ SSE

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 8

Basic Definitions

• Risk: function of 3 elements

⊲ likelihood(hazard)

⊲ likelihood(hazard ⇒ accident)

⊲ worst possible loss due to accident

(compare to expected loss)

• (System) safety engineering:

⊲ ensuring acceptable (quantifiable?) risk

⊲ scientific/management/engineering

⊲ reducing risk factors (weaken the link-

age)

⊲ context for software safety

⊲ hazard identification, assessment,

analysis, and resolution

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1) 9

Safety and Embedded Systems

• Safety: The property of being accident-

free for (embedded) software systems.

⊲ Accident: failures with severe consequences

⊲ Hazard: condition for accident

⊲ Special case of reliability

⊲ Specialized techniques

⊲ Focus on prevention and tolerance

• Embedded systems

⊲ Failure and consequences

⊲ Interaction among sub-systems

⊲ Safety: software vs. system

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)10

System/Software Definitions

• System (general vs embedded):

⊲ Physical systems or processes

⊲ A set of components

⊲ Common purposes/objectives

⊲ Description: input/output/time

⊲ Self-regulating vs. controlled

• Controller/Control subsystem:

⊲ Providing control to system

– order events

– regulate variable values

⊲ Help achieve overall objectives

⊲ Example control systems

⊲ Use of computers in control

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)11

System Definitions: Control Function

• Function (mathematical?) to be achieved

⊲ input, output and time

⊲ dynamic (differential) equation(s)

⊲ state variables and matrices

⊲ traditional vs. modern analysis

⊲ use of computers for system analysis

• Traditional analyses

⊲ single input, single output

⊲ transformations: Fourier & Laplace

⊲ stability criteria

⊲ performance and other analysis

⊲ pre-requisite for safety

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)12

System Definitions: Control Function

• Modern control system analyses

⊲ state variables and set of equations

⊲ controllability & observability

⊲ other concerns:

– optimality, robustness, adaptability, etc.

⊲ computer controller

⊲ continuous vs. discrete system

⊲ Z-transformation for discrete systems

• Example control systems

⊲ traditional feedback control

⊲ state variable based

⊲ sampling and discrete systems

⊲ computer control (examples later)

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)13

Analysis and Constraints

• Previous analyses unconstrained (provide

necessary but not sufficient condition for

safety)

• Constraints on operating conditions

⊲ quality considerations

– effect of defects in system

– performance and other measures

⊲ equipment capacity

– time and/or energy constraints

– volume, rate, etc.

⊲ process characteristics

– above factors fit into process

– given vs. adjustable aspects

⊲ safety constraints (next)

(derived from analysis of above)

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)14

System Definitions: Safety Constraints

• Safety constraints:

⊲ Derived from safety process

– particularly hazard id. FTA & ETA

⊲ Example: pressure threshold

⊲ Integration to other functions?

⊲ Discrete vs. continuous functions

• Handling of safety constraints:

⊲ Constrained optimization

– feasibility and practicality problems

⊲ Usually handled separately:

– different/conflicting concerns

– different characteristics

– feasibility of functional representation?

– liability and regulatory concern

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)15

System Definitions: Software Safety

• Software functions in control systems:

⊲ data logging

⊲ control function implementation

– direct digital control (via actuators)

– supervisory control (values/parameters)

⊲ maintenance of safety conditions

⊲ example: nuclear plant

• Relating safety constraints to software:

⊲ data logging: no direct impact

⊲ other two: possible safety problems

⊲ subsequent analysis

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)16

Software Safety Program (SSP)

• Leveson’s approach

⊲ Limited goals

⊲ Safety analysis and hazard resolution

⊲ Safety verification: Fig. 18.1 (c)

– few things carried over (dotted line)

⊲ Part IV, “Safeware”

– particularly Chapters 15-18.

• Software safety program (SSP)

⊲ Formal verification/inspection based

⊲ But restricted to safety risks

⊲ Based on hazard analyses results

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)17

SSP in Software Lifecycle

• Major activities

⊲ Hazard identification and analysis

⊲ Hazard resolution (design for safety)

⊲ Safety verification

⊲ Change analysis and

operational feedback

⊲ Fit in s/w process; Fig. 13.2 (p.293)

• Safety constraints and verification

⊲ Identify problems early

⊲ Carry over as design/code constraints

⊲ Distributed verification effort

⊲ Cascading:

– using safety/design/code constraints

– represented as formal specs

– verifying req./HLD/LLD/code

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)18

SSP in Software Lifecycle

• SSP in early (concept formation) phase:

⊲ Initial risk assessment: identify

– critical areas/hazards/design criteria

⊲ Preliminary hazard list

⊲ Audit trail: tracking/evaluating

⊲ Hazard analysis of previous accidents

• SSP in requirement stage

⊲ SRS (s/w req. specifications)

⊲ SRS consistent/satisfy safety constraints

⊲ Conflicts and tradeoffs?

⊲ SRS in a formal language

– able to handle timing and failure

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)19

SSP in Software Lifecycle

• SSP in High-Level Design (HLD)

⊲ Identify safety-critical items

– based on FTA, ETA, etc.

⊲ Design for safety: key!

– isolation/encapsulation

– protection and security, etc.

⊲ Use of safety invariants for modules

⊲ Link to pre/post safety verifications

• SSP in Low-Level Design (LLD)

⊲ Safety invariants/etc. preserved

⊲ (dynamic) interconnection properties

⊲ Same design for safety issues

– but finer granularity/less flexibility

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)20

SSP in Software Lifecycle

• SSP in code analysis

⊲ Further refinement

⊲ Preserving safety invariants/properties?

⊲ Combination of techniques

– testing/inspection/formal veri., etc.

– safety-focus: based on FTA&ETA

⊲ Yih/Tian approach later

• SSP in configuration control/maintenance

⊲ Change during verification/operation

⊲ Change effect analysis:

– how does it affect safety

– problem identification and resolution

– use FTA/ETA/etc with modifications

⊲ Importance of separation/isolation

⊲ Above ⇒ informed safety management

Prof. Jeff Tian Spring 2015



Software Reliability and Safety CSE 8317 (SSE.1)21

Perspectives

• State-of-the-Practice:

⊲ Computer used in safety-critical appl.

⊲ S/w Eng.: V&V, SRE, FT, FM

⊲ Gap between safety goal and QA

• SSE: Augment S/w Eng.

⊲ Overall framework: Leveson’s SSP

⊲ Analysis to identify hazard

⊲ Design for safety/hazard resolution

⊲ Safety constraints and verification

• Link to other topics:

⊲ In addition to: V&V, TQA, SRE

⊲ Important elements: FM and FT

⊲ New development: prescriptive specs

Prof. Jeff Tian Spring 2015


