Software Reliability and Safety

CSE 8317 — Spring 2017

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8317.17s

OV. Overview

• Quality/Dependability, Reliability, and Safety

• SRE: Software Reliability Engineering

• SSE: Software Safety Engineering

• CSE 8317 Perspective and Common Analyses
Quality and Dependability

- ISO 9126 quality characteristics:
 - functionality, reliability, usability, efficiency, maintainability, portability
 - Characteristics into sub-characteristics (strict hierarchy)
 - customized for companies – e.g., IBM’s CUPRIMDSO.
 - adapted to application domains – reliability, usability, security for Web

- Dependability: “The trustworthiness of a computing system which allows reliance to be justifiably placed on the services it delivers” (IFIP WG10.4).
 - reliability, availability, safety, security.
 - integrity and maintainability (?)
 - security sub-attributes: availability, confidentiality, integrity
Quality: Views and Aspects

<table>
<thead>
<tr>
<th>View</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correctness</td>
</tr>
<tr>
<td>Customer (external)</td>
<td>Failures: reliability safety</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Developer (internal)</td>
<td>Faults: count distr class hazard</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **8317**: Reliability/safety focus
- **Things affect reliability/safety**
What Is Reliability?

- **Reliability**: Probability of failure-free operation for a specific time period or for a given set of input conditions under a specific environment
 - Probability: quantitative/statistical
 - Failure: behavioral deviations
 - Time vs. input measurement/sampling
 - Environment: OP and UBST

- Software reliability engineering (SRE):
 - Failure and other measurement/data
 - Reliability assessment
 - Reliability and other predictions
 - Decision making and management
 - Reliability and process improvement
What Is Safety?

- **Safety**: The property of being accident-free for (embedded) software systems.
 - Accident: failures with severe consequences
 - Hazard: condition for accident
 - Related to but distinct from reliability
 - Specialized techniques

- **Software safety engineering (SSE)**:
 - Failure prevention and fault tolerance
 - Hazard identification/analysis techniques
 - Hazard resolution alternatives
 - Safety and risk assessment
 - Qualitative focus
 - Safety and process improvement
Reliability, Safety and Defects

- Reliability/safety negatively (and directly) correlated to defect (failure view).

- Defect/bug definition: SQE Ch.2
 - Failure: external behavior
 - deviation from expected behavior
 - Fault: internal characteristics
 - cause for failures
 - Error: missing/incorrect actions
 - Causal relation, but not necessarily 1-1
 - Safety-related: accident & hazard

- Defect and quality assurance: SQE Ch.3
 - Preventive actions based on analysis
 - Fault (detection & removal: insp./testing/etc.
 - Fault tolerance (and safety assurance)
Reliability vs Safety vs Security

- **Defect impact/consequence differences:**
 - Reliability: all failures
 - Safety: accidents only

- **Causes and intentions:**
 - Safety: all causes
 - especially external and interface/interaction
 - Reliability: all causes
 - Security: intentional/malicious
 - vs. all causes/intentions for R&S

- **Usability and other Q attributes:**
 How to fit into pictures?
QA for Reliability/Safety Assurance

- Defect prevention:
 - Error source elimination
 - Error blocking

- Defect removal: Inspection/testing/etc.

- Defect tolerance:
 - Fault tolerance (failure↓)
 - Damage minimization (safety)

- Link to reliability/safety
 - All help assure reliability/safety
 - SQE/slides online
QA for Reliability/Safety Assurance

• SRE relation/applications:
 ▶ Functional relation: reliability \sim failure
 ▶ QA alternatives directly work with SRE
 ▶ QA affects results/failures via causal chain error \Rightarrow fault \Rightarrow failure
 ▶ Closer to failure
 \Rightarrow closer to SRE activities
 (e.g., system and acceptance testing)

• SSE relation/applications:
 ▶ More focused (not as broad)
 ▶ Hazard focus (small subset of failures)
 ▶ SSP: QA throughout dev. process

• Specifics to be examined later
QA for Reliability/Safety Assurance

- Inspection:
 - Wide applicability (diff periods/artifacts)
 - Conceptual/static faults
 - Human intensive, varied cost

- Applications in SRE and SSE
 - Fault eliminations:
 - helps both reliability and safety
 - SRE/SSE ~ high/low fault densities
 - Scenario-based (focused) inspection:
 - SRE: common usage
 - SSE: FTA/ETA-based
 - Early reliability prediction
 - Safety constraints and inspection
QA for Reliability/Safety Assurance

- Formal verification: SQE Ch.15
 - Works on code with formal spec.
 - Practicality: high cost → benefit?
 - Human intensive, rigorous training

- Applications in SRE and SSE
 - High cost ⇒ mostly in SSE
 - Module SSE.3
 - Focus through FTA and/or ETA
 - Leveson’s approach:
 - safety and other constraints
 - carried through dev. process
 - Other adaptations:
 - table-driven, model checking, etc
 - PSC, module SSE.4
QA for Reliability/Safety Assurance

• Testing:
 ▶ Dynamic/run-time/interaction problems
 ▶ BBT/WBT: external vs internal focus
 ▶ Coverage/usage: termination criteria

• Applications in SRE and SSE
 ▶ Chief application domain for SRE
 ▶ OP-based testing (UBST):
 – basis for reliability modeling
 ▶ Earlier phases:
 – WBT/BBT with coverage
 ▶ Indirect link to SSE
QA for Reliability/Safety Assurance

- Fault tolerance:
 - Dynamic problems
 - Technique problems (independent NVP?)
 - Process/technology intensive
 - High cost

- Applications in SRE and SSE
 - Too expensive for regular SRE
 - As hazard reduction/control in SSE
 - Other related SSE techniques:
 - general redundancy
 - substitution/choice of modules
 - barriers and locks
 - analysis of FT
Measurement, Analysis, & Modeling

• Measurements: SQE Ch.18
 ▶ Result: success/failure/accident/etc.
 ▶ Indirect measurements, as predictors:
 – activity/product internal/environment

• Analysis and modeling:
 ▶ Model categories/context: SQE Ch.19
 ▶ Defect analysis: SQE Ch.20
 ▶ Risk identification: SQE Ch.21
 ▶ Common basis for SRE & SSE
 ▶ SRE/SSE models:
 Data ⇒ reliability & safety

• 8317 focus: Analysis-based resolution for reliability/safety assurance and improvement
Reliability Analyses and Models

- SRE.2/3: model = function relations
e.g., failure ~ time or input.

- Time domain approach
 ▶ Failure arrival process
 ▶ Statistical modeling
 ▶ Failure count/interval/rate data
 ▶ Time and other measurements
 ▶ SRGMs: s/w reliability growth models
 ▶ Assessment/prediction/decisions

- Input domain approach
 ▶ Repeated random sampling
 ▶ Related definitions and models
 - input domain reliability models
 ▶ Fault seeding models
Reliability Analyses and Models

- TBRMs: tree-based reliability models
 ▶ Both time/input domain info.
 ▶ Additional benefit:
 - risk identification
 - guide for focused remedial actions
 ▶ Technique: tree-based modeling
 ▶ Development/application/SMU research
 ▶ Major focus in 8317 (SRE.2)

- Other related issues: SRE.4
 ▶ Implementation & applications
 ▶ OP development & QA activities
 ▶ Fault/defect modeling
 ▶ Data treatment
 ▶ Reliability composition, etc.
Safety Analysis & Improvement

- Hazard analysis and resolution (SSE.2)
 - Focus: accidents and pre-conditions (hazards), not other failures
 - “Safeware” Ch.13-16 & SQE Ch. 16.4
 - Identification and analysis
 - Resolution: elimination/reduction/control
 - Integration in development process
 - SSP (software safety program)
 - “Safeware”, Part IV (Ch.11-18)

- Formal verification related:
 - Main part: SSE.3, SQE Ch. 15.
 - PSC: SSE.4, SQE Ch. 16.5
Safety Analysis & Improvement

• Hazard analysis:
 ▶ Fault trees: (static) logical conditions
 ▶ Event trees: dynamic sequences
 ▶ Other analyses
 ▶ Generally qualitative
 ▶ Related: hazard and risk assessment

• Hazard resolution (pre-accident)
 ▶ Negate/block/mitigate/etc.
 ▶ Hazard elimination/reduction/control

• Related: damage reduction (post-accident)
Safety Assurance & Improvement

- **Eliminate** identified hazard sources in material/component/software/etc.

- **Reduce** hazard likelihood/severity via:
 - Creating hazard barriers,
 - Minimizing failure probability, etc.

- **Control** hazard (after detection) via:
 - Isolation and containment,
 - Fail-safe design, etc.

- **Reduce** damage (post-accident, as compared to pre-accident for the above)
How CSE 8317 Fits In?

- Software reliability engineering (SRE):
 - SRGMs/IDRM: assessment/prediction;
 - TBRMs and other recent development;
 - Focus: reliability analysis/improvement.

- Software safety engineering (SSE):
 - Fault/event tree analyses, etc.;
 - Hazard elimination/reduction/control;
 - Process integration, FV, FT, PSC, etc.

- Common analyses/techniques:
 - Defect analysis (SQE Ch.20)
 - Risk identification: SQE Ch.21