Software Reliability and Safety CSE 8317 — Spring 2017

Prof. Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.17s

SRE.4: Applications & Frontiers

- Non-traditional applications.
- Data treatment for better results
- Data clustering and DCRMs
- Research issues and improvement

Current SRE Assessment

- Reliability assessment:
 - ▷ IDRMs and SRGMs (TBRMs too)
- Reliability prediction: SRGMs
 - ▶ OP accuracy?
 - Data appropriate/meaningful?
- Reliability improvement:
 - > TBRMs and other emerging approaches
- More research needed.
 (Why we are working on related topics.)

SRE Applications

- Traditional applications:

 - ▶ Telecommunication software/systems:
 - Musa/AT&T/Lucent, and others.
 - Operation systems and system software:
 - DEC/HP/IBM/etc.
 - Commercial software systems:
 - IBM examples in this class.
 - Other similar applications.
- New appl. domains: Web/SOA/Cloud/etc.
 - Adapting existing models/techniques.
 - ▶ Data selection/treatment necessary?
 - New models/techniques needed?

New: Web Testing and SRE

- SMU Project background:
 - NSF grants and industrial partners
 - research team headed by Tian.
 - ▶ key publications:
 - (Tian/Rudraraju/Li, 2004)
 - (Li/Alaeddine/Tian, 2009)
- Key activities and results:
 - - unified Markov models
 - details in Tian/SQE book: Ch.10.
 - ▶ Web SRE: time/activity measurement:
 - (Tian/Rudraraju/Li, 2004)
 - Web defect, reliability and other measurement:
 - (Li/Alaeddine/Tian, 2009)

Web Characteristics and QA

- Web applications and QA:

 - ▷ Document/information vs. computation.
 - ▷ Diverse usage patterns/environments.
 - ▶ Reliability one of the key concerns.
- Usage environment:
 - ▶ Traditional hardware/software env.

 - ▶ Layered structure.
 - > Failure analysis necessary.
- SRE and statistical testing appropriate.

Web Failure, QA, and Reliability

- Web failure: inability to deliver information or document required by a web user.
- Infrastructure failure

 - Network failure: down/congested.
 - > Browser failure: software problem.

 - Existing hardware/software reliability
- Information source failure
 - ▶ Individual page problems
 - Overall reliability: focus here.
- User errors: beyond our control.

Web Logs and Usage/Reliability

- Access and error logs: Information source for usage modeling and reliability analysis (Tian/Rudraraju/Li, 2004)
- Access log: hits

 - but not operations using local cache
 - > specific information recorded at server
 - ▶ sample entries: Table 1
- Error log: problems

 - ▷ problem type: Table 3
 - > similar info and format

Error Logs and Reliability Analysis

Error logs

- > Detailed problem information
- ▷ "failures" for reliability analysis
- > In conjunction with other measurements
- > When absent: use response code.

• Reliability analysis

- ▶ Mean-time-between-failures

$$MTBF = \frac{1}{f} \sum_{i} t_{i}$$

for usage time t_i

hd MTBF when t_i not available

$$\mathsf{MTBF} = \frac{n}{f}$$

Reliability growth using SRGMs (software reliability growth models)

Case Studies

- Site, information sources, and tools

 - Information sources: access/error logs (Apache web server)
 - Analysis tools:
 - FastStat and Perl programs
 - ▶ Manual analysis also
- Cross-validation:
 - ▷ www.kde.org.
 - Different types of web site.
 - ▶ Heavier traffic.

Case Study: Error Analysis

- General error analysis result:

 - > Types A through K, but two key types:
 - Type A: permission denied
 - Type E: file does not exist
- Further analysis of errors
 - Type A: may or may not be considered as failures

 - Relating to usage information
 - ▶ Reliability analysis

- Error over time: Fig 1.
 - Ups and downs (calendar time)
 - ▷ Impact of traffic/workload
 - Conclusion: proper workload/usage measurement for reliability analysis
- Possible workload/usage measurements:
 - Hits: already done in (Kallepalli and Tian, 2001)

 - \triangleright Sessions (\approx to data grouping)
- Measurement results: Figs 3-7.

- Overall reliability:
 - Relating failures to usage
 - errors vs workload measurements
 - - errors vs. bytes
- Reliability evaluation results:
 - > Application of Nelson model.

 - \triangleright MTBF = 26.6
 - \triangleright Reliability = 0.962
 - > Results in other units possible
 - but need to be cautious.

- Reliability growth for statistical testing
- Hypothetical situation:

 - > immediate defect removal
 - > studied over 26 days
 - ▷ calculated from error/access logs
- SRGM results:

 - Other results: Table 6.
 - ▶ Purification level ρ (from SRE.3, and SQE Ch.22)

- Cross validation using KDE data.
- Overall workload and reliability:

 - Session profile: Fig 12 − two variations(2 hr vs. 15 min)
 - only 2 hrs used for SMU/SEAS
 - → Hourly traffic: Fig 13.
 - ▷ Overall results: Table 7.
 - Similar results (better reliability)
- Reliability growth:
 - ⊳ GO model for errors vs. bytes: Fig. 14
 - $\rho = 86.7\%$ to 88.9%

Web SRE Summary

- What has been done?
 - Reliability assessment/prediction by analyzing both access and error logs
 - Case study to demonstrate viability and effectiveness
- SRE specific results:
 - Data and modeling from existing sources.
 - ▶ Good operational reliability assessment.
 - ▶ Reliability growth potential assessment.
 - \triangleright 2 diverse web sites \Rightarrow generalization.

Data-Model Mismatch

- Data-model mismatch:
 - > Assumption mismatch.
 - Data appropriate?
 - ⇒ data selection and/or treatment
 - ▶ Model appropriate?
 - ⇒ choose alternative model
 - ⇒ develop new model
 - Research community: new models (but often impractical)
 - ▶ Industry: model/data selection/treatment
- Data treatment:
 - Censoring techniques

Data Treatment

- Data censoring techniques:
 - ▶ Key idea: skip gaps in data
 - ⇒ censored data reflects usage
 - ► Technique: K.-Y. Cai, IEEE Trans.
 Reliability 46(1):69-75, 1997.
- Data compression:

 - ▷ Basis: coverage
 - less likely to fail if tested
 - coverage as multiplier
 - ► Technique: M.-H. Chen et al, IEEE Trans.
 Reliability 50(2):165-170, 2001.
- Works with individual data points directly.

Data Grouping

- Need for data grouping:
 - Already grouped from applications:
 - hourly/daily/weekly/monthly data
 - data collection practicality
 - Local fluctuations
 - Data dependencies
- Basis for data grouping:
 - External clock/time (most of the existing work)
 - Model (result) optimization
 - Schneidewind approachTSE 19(11):1095-1104, 11/1995
 - Data clustering

DCRM

- General information/strategy:

 - DCRM: DCRM1 + DCRM2 data cluster based reliability models
 - Automatic clustering
 - ▷ DCRM1: direct usage
 - DCRM2: use with existing SRGMs (grouped data as input)
- Basic ideas: How?
 - ▷ Clustering of homogeneous runs.
 - Data driven/sensitive partitions.
 - ▶ Method: Tree-based modeling (TBM).

The Case for Grouping

- Scenario-based vs. random testing:
 - ▷ Parallelism/interleaving in testing.
 - ▶ Randomized workload.
 - ▷ Similar overall picture.
 - $\triangleright \Rightarrow$ Data grouping.
- Defect fixing and run dependencies:
 - > Strong short term dependency.
 - ▶ Lack of long term dependency.
 - $\triangleright \Rightarrow$ Clustering.
- Develop DCRMs

DCRM Construction

- Clustering/grouping test runs:
 - ▷ By similar failure intensity.
- Generic procedure:
 - > Identify period, runs, and time.
 - ⊳ Failure intensity = failure / time,
 - ▷ Simple algebraic mean for segment:

$$\frac{\sum_{j=1}^{n_i} f_{ij}}{n_i} = \frac{f_i}{n_i} = \lambda_i$$

> Weighted average for segment:

$$\frac{\sum_{j,l_i < d_j \le u_i} t_j \lambda_j}{\sum_{j,l_i < d_j \le u_i} t_j} = \frac{\sum_{j,l_i < d_j \le u_i} f_j}{\sum_{j,l_i < d_j \le u_i} t_j} = \frac{F_i}{T_i} = \Lambda_i$$

▷ Other: as special cases of above.

Model Usage and Performance

- Direct usage: DCRM1
 - ▶ Reliability for each segment.
 - > Overall trend assessment.

 - ▶ Prediction: extrapolation.
- DCRM1 performance:
 - \triangleright Goodness-of-fit: R^2
 - 304 vs. 6329 for Goel-Okumoto.
 - > Prediction comparison:
 - use training and testing sets.
 - linear extrapolation.
 - good short term results

DCRMs vs Other Models

• DCRM1 vs IDRMs:

- - similar to Nelson model.
- > Partition by general failure intensity
 - similar to Brown-Lipow model.

DCRM1 vs SRGMs:

- \triangleright Constant λ for given period
 - similar to Jelinski-Moranda model.
- But variable steps in consecutive steps
 - similar to Littlewood-Verrall model.
- \triangleright Non-function form for progression of λ 's
- PFC-SRGMs: used in DCRM2.

DCRM2

- DCRM2: SRGMs with grouped data (each segment as a data point)
- Choosing SRGMs for DCRM2:
 - ▷ Only PFC (FC) models usage
 - ▶ NHPP choices:
 - Goel-Okumoto (GO)
 - Musa-Okumoto (MO, log Poisson)
 - Schneidewind and data req.
 - S-shaped as descriptive model
 - ▶ GO and MO choices
- More about GO and MO choices:

 - ▶ Past experience at IBM
 - > Empirical data elsewhere

DCRM Performance

- Product and comparison points:
 - ▶ Products E (and D) from IBM
 - ▷ E: last 8 weeks
 - 7 point comparison for DCRM2
 - DCRM1,GO, MO, DCRM2.GO, DCRM2.MO
- Applicability:
 - ▷ DCRM1 clearly superior
 - Others about equal
- Goodness-of-fit:
 - ▷ DCRM1 clearly superior
 - Others about equal
 - > Caution: use more important

DCRM Performance

- Reliability assessment:
 - DCRM1 not as stable but available early
 - Convergence of others
 - DCRM2 provide tighter bound (more stable also, see prediction)
- Reliability prediction:
 - DCRM1 only for short term (mixed results)
 - only one available early
 - Prediction accuracy tables
 - Direct comparison graphs
- Model stability: DCRM2 better

DCRM Summary

- Easily satisfiable assumptions:
 - ▶ Rough operational profiles.
 - ▶ No long term dependencies
 - but short term dependencies
 - > Failure intensity clusters.
- Implementation and applications:
 - ▶ Model construction: S-PLUS.
 - > Practical applications.
 - > Better/wider applicability.

 - > Further studies underway.

Other Data/Models

Trend analysis:

- Qualitative/visual inspection:
 - curvature (super-/sub-additive)
- Quantitative analysis.
- Avoid meaningless modeling results.

Other data/models:

- ▷ Composite models.
- ▶ General models for correlated data: Goceva-Popstojanova and Trivedi, IEEE Trans. Reliability, 49(1):37-48, 3/2000.
- ⊳ etc., Lyu book.

Improvement Strategies

- Traditional models/techniques:
 - Assessment/prediction focus.
 - ▶ Limited used in improvement.
 - ▶ Testing/QA as semi-separate.
- TBRM and extensions:
 - > TBRMs for risk identification.

 - Extension to other phases:
 - analyze other (e.g., inspection) data
 - reliability composition

Other Research Topics

- Linking SRE with metrics/analysis.
 - Musa prescriptive models refinement.
 - ▶ Metrics-SRE: still separate
 - risk (problem-prone) identification
 - Quantitative linkage?
- Reliability composition:
 - ▷ Small scale: Hamlet/Mason/Woit work.

 - Work at SMU: OP-mapping, fault-injection, embedded systems.
- Reliability optimization.
 - Other factors: cost, schedule, etc.
 - ▶ Lyu/Rangarajan/van Moorsel work.

Other Topics: Dependability Maximization

- Recent work at SMU: Tian, Nair, Huang,
 Alaeddine, and Siok
- Dependability assurance (HISS):

 - Multi-component
 - ▷ General idea of diversity (in FT, etc.)
 - NVT key factor: independence
 - Dependability composition: NSF/MRI project at SMU/UTD/UNT
- Dependability maximization:
 - Data envelopment analysis (DEA)
 - Constrained maximization
 - output: multi-component/multi-attribute
 - input: effort/cost/etc.
 - Promising initial results and direction