Software Reliability and Safety CS 8317 — Fall 2020

Prof. Jeff Tian, tian@engr.smu.edu CS, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.20f

SRE.1: SRE Basics

- SRE Overview and Approaches
 see Slides for SQE Chapter 22.
- SRE Activities and Context
- Analyses beyond reliability modeling
- General problems/issues

SRE Activities

- Main reference: Lyu/HSRE Ch.6
- Analysis/modeling activities:
 - ▷ Predicting (prescriptive) reliability:
 - based on prod./proc. characteristics
 - Musa's work at AT&T
 - ▷ Estimating (descriptive) reliability:
 - s/w reliability growth models (SRGMs)
 - other models and applications
 - all based on testing/defect/etc. data
 - ▷ SRE practice: mostly latter
- Modeling sub-activities:
 - ▷ Observing/measuring
 - Choosing models for goal/data/expr
 - Evaluating modeling result
 - Applying results in process/decisions
 - ▷ Followup and improvement

SRE Activities

- In-process activities:
 - ▷ OP construction:
 - start:requirement end:testing
 - Prepare/execute OP-guided testing
 - Process management & improvement
 manage by reliability goals
 - ▷ Techniques for above: in 7314
 - ▷ Design for reliability:
 - some additional research
- In-field activities:
 - Measurement and data gathering
 - Focus: availability management

Availability = $\frac{MTTF}{MTTF + MTTR}$

increase MTTF and decrease MTTR

SRE and System Reliability

- Hardware reliability
 - ▷ Different characteristics aging, wear, etc. \Rightarrow reliability decay
 - Different models (and distribution functions)
 - Extensive existing work analysis, composition (block-diagram), etc.
- Systems engineering
 - System composition/trade-offs
 - ▷ Maximize system reliability
- Lyu-book: Chapter 2 (s/w vs sys.)

SRE and Quality/Dependability

- Quality attributes beyond reliability and safety:
 - ▷ Usability, safety, security
 - ▷ Many others in ISO 9126 etc.
 - Share some common analysis techniques
- Dependability
 - ▷ Usually for (software-intensive) systems
 - e.g., SOA, Cloud, Net-Centric
 - ▷ High-assurance systems (HISS):
 - security as one major area
 - reliability, safety
 - availability, fault tolerance, etc.
 - SRE/SSE as important part of HISS techniques

SRE and Other Analysis

- Quantitative analysis
 - ▷ Defect analysis, risk analysis, etc,
 - Measurement and data collection
 - Analysis: assessment/prediction/control
 in SRE, SSE, etc.
 - ▷ Statistical and AI-based
- Qualitative analysis
 - ▷ Defect classification, root-cause, etc.
 - Measurement level: nominal or ordinal
 - Subjective judgment and process
- Example: usability work at SMU

SRE Issues: What and How

- Usage and effectiveness
 - Good assessment vehicle
 - ▷ Prediction varies w/ OP quality
 - Limited control capability
 - Dependency on data/environment
- Models and development
 - ▷ SRGMs: overall picture
 - ▷ Combinatorial: snapshots, focus
 - ▷ Integrated(TBRMs etc): promising
 - Data/tools/experience
 - Integration with other initiatives

SRE Issues: Where and When

• Products and environments

- ▷ Medium reliable software: SRE
- ▷ Safety critical: SSE
- ▷ Mass market: focus on usability, etc.
- Spectrum: (-ilities)...(SRE)...(safety)
- Tailoring/adaptation/adoption
- When it is useful
 - ▷ OP-based random testing
 - ▷ Late in development cycle
 - ▷ Too late? What to do? (SRE.2)
 - ▷ Learn from hardware RE.

SRE Issues: Process & QA

- Direct link to testing
 - Desting techniques affect reliability
 - Testing measurements in SRE modeling
 - sampling: Nelson model & other IDRMs
 - reliability growth over time: SRGMs
 - fault seeding (& models), etc.
- Other in-process measurement/analysis
 - ▷ Requirements/specs to OP/UBST
 - Design and code measurement to defect analysis and predictive modeling
 - ▷ Current/historical data from elsewhere
 - Early remedial/preventive actions

SRE Issues: Improvement

- Improvement potential
 - ▷ Risk identification
 - Remedial actions
 - ▷ Prevention: design for reliability
 - ▷ Learn from experience
- Timing and process for improvement
 - ▷ Early risk identification
 - ▷ Make time for improvement actions
 - ▷ Improvement process: QIP like
 - Feedback and feedback-loop critical

SRE Issues: Improvement

- More data and early
 - Defect: Classification/distribution
 - Internal measurement
 - Linkage: predictive analysis/modeling
 - ▷ Early availability of data
 - Mixed quantitative and qualitative data
- Analyses
 - ▷ Statistical: regression, NN, TBM etc.
 - ▷ Analytical: trace, causing, FT etc.
 - often qualitative or hybrid (e.g. ODC)
 - ▷ Recent applications of AI/ML in SwEngr.
- Linkage to subsequent topics