Software Reliability and Safety CS 8317 — Fall 2020

Prof. Jeff Tian, tian@engr.smu.edu CS, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.engr.smu.edu/~tian/class/8317.20f

SSE.2: Hazard Analysis

- Hazard Analyses and Techniques
- Fault Tree Analysis (FTA)
- Event Tree Analysis (ETA)
- Other HA Techniques

Safety Techniques

- Hazard and risk identification:
 - Accident scenarios: actual/hypothetical
 - starting points for safety
- Hazard analysis and assessment:

 - ▷ Event trees: dynamic sequences
 - Other analyses/assessment techniques
- Hazard and risk resolution
 - ▶ Hazard elimination
 - Hazard reduction
 - Hazard control
 - ▶ Damage control

Hazard Analyses: Types

- Sub-system hazard analyses (SSHA)
 - Hazard within individual sub-system
- System hazard analyses (SHA)

 - ▷ Throughout development process
 - Focus on early phases to provide info. for other activities (hazard resolution and safety verification)
- SHA/SSHA in software process
 - ▷ Throughout development process
 - Focus on early phases to provide info.
 for other activities (hazard resolution and safety verification)

Hazard Analyses: Techniques

- Primary techniques for SHA/SSHA:

 - ⊳ SQE Ch.16.4 and Safeware Ch.14.
- Other techniques:
 - Design reviews & checklists
 - Hazard indices
 - Risk trees

 - ⊳ FMECA (FMEA + Criticality), etc.
 - ▷ Above: "Safeware" Ch.14.
 - ▷ Specific to software: "Safeware" Ch.15.
 - ▷ STAMP and related HA (sse4 module)
- FTA and ETA slides from SQE Ch.16.4.

Hazard Analysis: SFTA

SFTA: Software FTA

- Same concept applied to software
- Actual implementation (white-box)
- ▶ Language elements (high-level):
 - assignment and function calls
 - branching statement, loops, etc.
- ▷ Also for specification/architecture
 - black-box control flow diagram
 - equivalent language representation

SFTA construction:

- > Templates/examples for diff. statements
- Safeware 18.2.2 (pp.497-507)
- ⇒ Additional work needed, especially for system design/architecture new work of STPA by Leveson

Hazard Analysis: ETA & CCA

- ETA alone: trace of accident.
 May desire explanation also (from FTA)
- Cause-consequence diagram (CCA):
 - Combine ETA with FTA
- Using ETA and CCA:
 - ▶ Partial vs. total ETA
 - > Focus on main consequences
 - Details:

"Safeware" 14.5-14.6 (pp.327-pp.335)

Hazard Analyses: FMEA & FMECA

- Failure modes and effect analysis (FMEA)

 - Some similarity to OP

 - Typically include environmental variables, operational scenarios, etc.
- FMEA relation to other HA techniques
 - Similar to ETA, but not focusing on time nor sequence
 - ⊳ FMECA (FMEA + Criticality), etc.
 - Root in traditional (hardware) reliability engineering
 - Less so because of the dynamic/variable nature of software executions