Software Reliability and Safety CS 8317 — Spring 2023

Prof. Jeff Tian, tian@engr.smu.edu CS, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 s2.smu.edu/~tian/class/8317.23s

OV. Overview

- Quality/Dependability, Reliability, and Safety
- SRE: Software Reliability Engineering
- SSE: Software Safety Engineering
- Perspective and Common Analyses

Quality, Reliability and Safety

- ISO 9126 quality characteristics:
 - functionality, reliability, usability, efficiency, maintainability, portability
 - Characteristics into sub-characteristics (strict hierarchy)
 - > customized for companies
 - e.g., IBM's CUPRIMDSO.
 - > adapted to application domains
 - reliability, usability, security for Web

• ISO 25010:

- Top level models: product quality, data quality, quality in use
- Product quality similar to ISO 9126
 adding compatibility and security attributes
- Quality in use: effectiveness, efficiency, satisfaction, freedom from risk, context
- ⊳ Safety ≈ freedom from risk (or subset)

Dependability and R/S?

- Compound quality attributes:
 - Different types of systems/clusters quality levels: wide spectrum complexity and size differences/diversity structure: monolithic to heterogeneous cloud, service, net-centric systems...

 - ▶ High-assurance systems: Dependability
- Dependability: "The trustworthiness of a computing system which allows reliance to be justifiably placed on the services it delivers" (IFIP WG10.4).
 - ▷ reliability, availability, safety, security.

 - security sub-attributes:availability, confidentiality, integrity

What Is Reliability?

- Reliability: Probability of failure-free operation for a specific time period or for a given set of input conditions under a specific environment
 - ▶ Probability: quantitative/statistical
 - > Failure: behavioral deviations

 - ▷ Environment: OP and UBST
- Software reliability engineering (SRE):

 - Reliability assessment
 - Reliability and other predictions
 - Decision making and management
 - Reliability and process improvement

What Is Safety?

- Safety: The property of being accidentfree for (embedded/hybrid) software systems.
 - > Accident: failures with severe consequences
 - "system", not pure, stand alone software

 - Related to but distinct from reliability
 - Specialized techniques
- Software safety engineering (SSE):
 - QA, esp. failure prevention and fault tolerance
 - Hazard identification/analysis techniques
 - Hazard resolution alternatives
 - Safety and risk assessment/improvement
 - Qualitative focus

Reliability, Safety and Defects

- Reliability/safety negatively (and directly) correlated to defect (failure view).
- Defect/bug definition: SQE Ch.2
 - - deviation from expected behavior
 - > Fault: internal characteristics
 - cause for failures
 - ▷ Error: missing/incorrect actions

 - ▷ Safety-related: accident & hazard
- Defect and quality assurance: SQE Ch.3
 - Preventive actions based on analysis
 - ⊳ Fault (detection &) removal: insp./testing/etc.

Reliability vs Safety vs Security

- Defect impact/consequence differences:

 - ▷ Safety: accidents only
 - failures with severe consequences
- Causes and intentions:
 - ⊳ Safety: all causes
 - especially external and interface/interaction
 - hazard: pre-cond. to accident
 - ▶ Reliability: all causes
 - ▷ Security: intentional/malicious
 - vs. all causes/intensions for R&S

- Defect prevention:
- Defect removal: Inspection/testing/etc.
- Defect tolerance:
 - ⊳ Fault tolerance (failure↓)
 - Damage minimization (safety)
- Link to reliability/safety
 - ▷ All help assure reliability/safety

- SRE relation/applications:
 - \triangleright Functional relation: reliability \sim failure
 - QA alternatives directly work with SRE

 - Closer to failure
 ⇒ closer to SRE activities
 (e.g., system and acceptance testing)
- SSE relation/applications:
 - More focused (not as broad)

 - ▷ SSP: QA throughout dev. process
- Specifics to be examined later

• Inspection:

- Wide applicability (diff periods/artifacts)
- ▶ Human intensive, varied cost

Applications in SRE and SSE

- > Fault eliminations:
 - helps both reliability and safety
 - − SRE/SSE ~ high/low fault densities
- ▷ Scenario-based (focused) inspection:
 - SRE: common usage
 - SSE: FTA/ETA-based
- ⊳ Early reliability prediction
- Safety constraints and inspection

- Formal verification: SQE Ch.15
 - ▶ Works on code with formal spec.
 - ▷ Practicality: high cost → benefit?
 - Human intensive, rigorous training
- Applications in SRE and SSE

 - ▶ Module SSE.3

 - ▶ Leveson's approach:
 - safety and other constraints
 - carried through dev. process
 - Other adaptations:
 - table-driven, model checking, etc
 - PSC, module SSE.4

• Testing:

- Dynamic/run-time/interaction problems
- ▷ BBT/WBT: external vs internal focus
- Applications in SRE and SSE
 - ▷ Chief application domain for SRE
 - ▷ OP-based testing (UBST):
 - basis for reliability modeling
 - ▶ Earlier phases:
 - WBT/BBT with coverage
 - ▶ Indirect link to SSE

Fault tolerance:

- Dynamic problems

- ▶ High cost

Applications in SRE and SSE

- ▷ As hazard reduction/control in SSE
- > Other related SSE techniques:
 - general redundancy
 - substitution/choice of modules
 - barriers and locks
 - analysis of FT

Measurement, Analysis, & Modeling

- Measurements: SQE Ch.18

 - ▶ Indirect measurements, as predictors:
 - activity/product internal/environment
- Analysis and modeling:
 - ▶ Model categories/context: SQE Ch.19
 - Defect analysis: SQE Ch.20

 - ▷ SRE/SSE models:
 Data ⇒ reliability & safety
- 8317 focus: Analysis-based resolution for reliability/safety assurance and improvement

Reliability Analyses and Models

- SRE.2/3: model = function relations e.g., failure \sim time or input.
- Time domain approach
 - > Failure arrival process
 - Statistical modeling
 - ▶ Failure count/interval/rate data
 - > Time and other measurements
 - > SRGMs: s/w reliability growth models
 - Assessment/prediction/decisions
- Input domain approach
 - Repeated random sampling
 - > Related definitions and models
 - input domain reliability models
 - > Fault seeding models

Reliability Analyses and Models

- TBRMs: tree-based reliability models
 - ▶ Both time/input domain info.
 - Additional benefit:
 - risk identification
 - guide for focused remedial actions

 - Development/application/SMU research
 - → Major focus in 8317 (SRE.2)
- Other related issues: SRE.4
 - ▷ Implementation & applications
 - ▷ OP development & QA activities

 - Data treatment
 - ▶ Reliability composition, etc.

Safety Analysis & Improvement

- Hazard analysis and resolution (SSE.2)
 - Focus: accidents and pre-conditions (hazards), not other failures

 - ▶ Identification and analysis
 - ▶ Resolution: elimination/reduction/control
 - > Integration in development process
 - SSP (software safety program)
 - "Safeware", Part IV (Ch.11-18)
- Formal verification related:
 - ▶ Main part: SSE.3, SQE Ch. 15.

Safety Analysis & Improvement

- Hazard analysis:
 - ▶ Fault trees: (static) logical conditions
 - ▷ Event trees: dynamic sequences

 - > Related: hazard and risk assessment
- Hazard resolution (pre-accident)
 - ▶ Negate/block/mitigate/etc.
- Related: damage reduction (post-accident)

Safety Assurance & Improvement

- **Eliminate** identified hazard sources in material/component/software/etc.
- Reduce hazard likelihood/severity via:
 - Creating hazard barriers,
 - ▶ Minimizing failure probability, etc.
- Control hazard (after detection) via:
 - ▷ Isolation and containment,
- Reduce damage (post-accident, as compared to pre-accident for the above)

How CS 8317 Fits In?

- Software reliability engineering (SRE):
 - ▷ SRGMs/IDRMs: assessment/prediction;
 - > TBRMs and other recent development;
- Software safety engineering (SSE):
 - ⊳ Fault/event tree analyses, etc.;

 - ▷ Process integration, FV, FT, PSC, etc.
- Common analyses/techniques:
 - quality framework and general techniques