Software Reliability and Safety CS 8317 — Spring 2023

Prof. Jeff Tian, tian@engr.smu.edu CS, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 s2.smu.edu/~tian/class/8317.23s

SSE.2: Hazard Analysis

- Hazard Analyses and Techniques
- Fault Tree Analysis (FTA)
- Event Tree Analysis (ETA)
- Other HA Techniques

Safety Techniques

- Hazard and risk identification:
 - Accident scenarios: actual/hypothetical - starting points for safety
 - ▷ Focus: operations and operational env.
- Hazard analysis and assessment:
 - ▷ Fault trees: (static) logical conditions
 - Event trees: dynamic sequences
 - Other analyses/assessment techniques
- Hazard and risk resolution
 - Hazard elimination
 - ▷ Hazard reduction
 - Hazard control
 - Damage control

Safety Techniques in Process

• Starting points for safety (initiation)

Accident actual/hypothetical \Rightarrow Hazard and risk identification

Hazard analysis (pre-process?)

 \triangleright input: above + expertise ▷ output: driver for HR below

- Hazard and risk resolution
 - Negate/tolerate(passive)/control(active)
 - ▷ Damage control (post accident)
 - ▷ In-process: cascading activities, HR/n + (HA?)

HA: Types/Levels/Scope

- Sub-system hazard analyses (SSHA)
 - Hazard within individual sub-system
 - Component/sub-system in isolation
- System hazard analyses (SHA)
 - Focus: interface and interaction
 - Subsys/env/human effect on system
 - > Throughout development process
 - Focus on early phases to provide info.
 for other activities (hazard resolution and safety verification)
- SHA/SSHA in software process
 - > Throughout development process
 - Focus on early phases to provide info.
 for other activities (hazard resolution and safety verification)

Hazard Analyses: Techniques

- Primary techniques for SHA/SSHA:
 - ▷ Fault-tree analyses (FTA)
 - ▷ Event-tree analyses (ETA)
 - ▷ SQE Ch.16.4 and Safeware Ch.14.
- Other techniques:
 - Design reviews & checklists
 - ▷ Hazard indices
 - Risk trees
 - Cause-consequence analysis (CCA)
 - \triangleright Hazard & operability analysis (HAZOP)
 - ▷ Failure modes and effect analysis (FMEA)
 - \triangleright FMECA (FMEA + Criticality), etc.
 - ▷ Above: "Safeware" Ch.14.
 - ▷ Specific to software: "Safeware" Ch.15.
 - ▷ STAMP and related HA (sse4 module)
- FTA and ETA slides from SQE Ch.16.4.

Hazard Analysis: SFTA

- SFTA: Software FTA
 - Same concept applied to software
 - ▷ Actual implementation (white-box)
 - ▷ Language elements (high-level):
 - assignment and function calls
 - branching statement, loops, etc.
 - Also for specification/architecture
 - black-box control flow diagram
 - equivalent language representation
- SFTA construction:
 - ▷ Templates/examples for diff. statements
 - ▷ Safeware 18.2.2 (pp.497-507)
- ⇒ Additional work needed, especially for system design/architecture new work of STPA by Leveson

Hazard Analysis: ETA & CCA

- ETA alone: trace of accident. May desire explanation also (from FTA)
- Cause-consequence diagram (CCA):
 - \triangleright Combine ETA with FTA
 - ▷ Explaining decisions in ET
- Using ETA and CCA:
 - \triangleright Partial vs. total ETA
 - Focus on main consequences
 - \triangleright Details:
 - "Safeware" 14.5-14.6 (pp.327-pp.335)

Hazard Analyses: FMEA & FMECA

- Failure modes and effect analysis (FMEA)
 - \triangleright Reverse of FTA
 - ▷ Some similarity to OP
 - Focus on logical conditions
 - \triangleright Typically include environmental variables, operational scenarios, etc.
- FMEA relation to other HA techniques
 - \triangleright Similar to ETA, but not focusing on time nor sequence
 - \triangleright FMECA (FMEA + Criticality), etc.
 - ▷ Root in traditional (hardware) reliability engineering
 - \triangleright Less so because of the dynamic/variable nature of software executions