Hypothesis Testing
CSE 8340
Empirical Software Engineering

A. Güneş Koru

November 19, 2002

An introduction to the topic that explains basic concepts.

- Hypotheses
- Decision Problem
- The Standard Format of Hypothesis Testing
Hypotheses

• Hypothesis: An assumption or concession made for the sake of argument.

• Hypothesis Testing: Choose between two competing hypotheses about the value of a population parameter using the knowledge obtained from a sample.

 — Simple hypothesis: One value of the population parameter.
 * $\mu = 115$,
 * $\mu_1 - \mu_2 = 0$ (exact difference), etc.
 — Composite hypothesis: A range of values that the population parameter may assume ($\mu \neq 115$).

• Null Hypothesis (H_0): Status quo. Changes nothing.

• Alternative Hypothesis (H_a): Believed to be true.

• Both can be simple or composite.
Hypotheses (cont...)

- Example: Mean IQ.

 - \[H_0 : \mu = 100, \quad H_a : \mu > 100 \]

 - \[H_0 : \mu_1 - \mu_2 = 0, \quad H_0 : \mu_1 - \mu_2 \neq 0 \]

- The population parameter should be included in one of these two sets.

- One way to assure is using complementary sets.

- One equality statement as the null hypothesis, a composite alternative hypothesis.

- The values specified by the alternative hypothesis:

 - *One Sided (tailed) test*: Either below or above the value specified in the equality.

 - *Two Sided (tailed) test*: Can be both sides.
Decision Problem

• Accept or reject the null hypothesis based on the evidence.

 – Question: how likely the population parameter can take this value if my null hypothesis is true.
 – Answer is a probability value found by statistical means.
 – Larger sample, more accurate decisions.

• Acceptance or rejection but not proof.

<table>
<thead>
<tr>
<th>Reality</th>
<th>H_0 is true</th>
<th>H_0 is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept H_0</td>
<td>Correct</td>
<td>Type II error (β)</td>
</tr>
<tr>
<td>($Confidence Level = 1 - \alpha$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reject H_0</td>
<td>Type I error (α)</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>($Power of the test = 1 - \beta$)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Four possible decisions
(Note that column sums are 1)
Decision Problem (cont...)

- α is the level of significance.

- Confidence level $= 1 - \alpha$. The complement of Type I error.

- $1 - \beta$ is the power of the test.

- One unit change in α does not cause such a change in β.

- If n (sample size) is constant and $\alpha \uparrow$, then $\beta \downarrow$.

- If $n \uparrow$, then $\alpha \downarrow$ and $\beta \downarrow$.
The standard format of hypothesis testing

1. State the null and alternative hypotheses.
 - Clear and simple null hypothesis
 - Mutually exclusive null and alternative hypotheses
 - Population parameter should be included in either the null or the alternative hypothesis

2. Determine the appropriate test statistic
 - Test statistic is a random variable used to determine how close a specific sample result falls to one of the hypotheses being tested.
 - Its p.d.f. must be known when it is assumed that the null hypothesis is true.
 - It must contain the parameter being tested.
 - All of its remaining terms must be known and calculable from the sample.
 - If $H_0 : \mu = 130$, the best estimate of μ is \bar{x}. Then
the standardization of \overline{x},

$$z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

can be used as the test statistic, where μ_0 is the mean specified under the null hypothesis, σ is its known value.

3. Determine the critical regions (Fig. 8.4. p. 315)

- The set of values that will lead to
 - rejection of H_0: critical region
 - acceptance of H_0: acceptance region
- Decide on the level of significance, α, how much you can accept wrongly rejecting H_0 when it is true.
- Social sciences $\alpha = 0.05$ and medical sciences $\alpha = 0.01$ or $\alpha = 0.005$.
- From a table, look up the z value, that matches the level of significance required.
- Calculate the critical values using this z value using the above formula.
- Critical value is the point that separates these two regions (Fig 8.5. p. 316).
4. Compute the value of the test statistic

5. Make the statistical decision and interpretation

Reference: