Hypothesis Testing CSE 8340 Empirical Software Engineering

A. Güneş Koru

November 19, 2002

An introduction to the topic that explains basic concepts.

- Hypotheses
- Decision Problem
- The Standard Format of Hypothesis Testing

Hypotheses

- Hypothesis: An assumption or concession made for the sake of argument.
- Hypothesis Testing: Choose between two competing hypotheses about the value of a population parameter using the knowledge obtained from a sample.
 - Simple hypothesis: One value of the population parameter.
 - $* \mu = 115$
 - * $\mu_1 \mu_2 = 0 \ (exact \ difference)$, etc.
 - Composite hypothesis: A range of values that the population parameter may assume $(\mu \neq 115)$.
- ullet Null Hypothesis (H_0) : Status quo. Changes nothing.
- Alternative Hypothesis (H_a) : Believed to be true.
- Both can be simple or composite.

Hypotheses (cont...)

• Example: Mean IQ.

```
-H_0: \mu=100, H_a: \mu>100
-H_0: \mu_1-\mu_2=0, H_0: \mu_1-\mu_2\neq 0
```

- The population parameter should be included in one of these two sets.
- One way to assure is using complementary sets.
- One equality statement as the null hypothesis, a composite alternative hypothesis.
- The values specified by the alternative hypothesis:
 - $-\ One\ Sided\ (tailed)\ test$: Either below or above the value specified in the equality.
 - $-\ Two Sided (tailed) \ test$: Can be both sides.

Decision Problem

- Accept or reject the null hypothesis based on the evidence.
 - Question: how likely the population parameter can take this value if my null hypothesis is true.
 - Answer is a probability value found by statistical means.
 - Larger sample, more accurate decisions.
- Acceptance or rejection but not proof.

	Reality	
	H_0 is true	H_0 is false
Accept H_0	Correct	Type~II~error~(eta)
	$(Confidence\ Level=1-lpha)$	
Reject H_0	$Type\ I\ error\left(\alpha\right)$	Correct
		(Powerofthetest=1-eta)

Table 1: Four possible decisions (Note that column sums are 1)

Decision Problem (cont...)

- ullet lpha is the $level\ of\ significance$.
- $Confidence\ level=1-\alpha$. The complement of $Type\ I$ error.
- 1β is the *power* of the test.
- ullet One unit change in lpha does not cause such a change in eta
- If n (sample size) is constant and $\alpha \uparrow$, then $\beta \downarrow$.
- If $n \uparrow$, then $\alpha \downarrow$ and $\beta \downarrow$.

The standard format of hypothesis testing

- 1. State the null and alternative hypotheses.
 - Clear and simple null hypothesis
 - Mutually exclusive null and alternative hypotheses
 - Population parameter should be included in either the null or the alternative hypothesis
- 2. Determine the appropriate test statistic
 - Test statistic is a random variable used to determine how close a specific sample result falls to one of the hypotheses being tested.
 - Its p.d.f. must be known when it is assumed that the null hypothesis is true.
 - It must contain the parameter being tested.
 - All of its remaining terms must be known and calculable from the sample.
 - ullet If $H_0: \mu=130$, the best estimate of μ is \overline{x} . Then

the standardization of \overline{x} ,

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

can be used as the test statistic, where μ_0 is the mean specified under the null hypothesis, σ is its known value.

- 3. Determine the critical regions (Fig. 8.4. p. 315)
 - The set of values that will lead to
 - rejection of H_0 : critical region
 - acceptance of H_o : acceptance region
 - Decide on the level of significance, α , how much you can accept wrongly rejecting H_0 when it is true.
 - Social sciences $\alpha=0.05$ and medical sciences $\alpha=0.01$ or $\alpha=0.005$.
 - ullet From a table, look up the z value, that matches the level of significance required.
 - ullet Calculate the critical values using this z value using the above formula.
 - Critical value is the point that separates these two regions (Fig 8.5. p. 316).

- 4. Compute the value of the test statistic
- 5. Make the statistical decision and interpretation

Reference:

Donald L. Harnett and James L. Murrey, Introductory Statistical Analysis, 2nd Edition, 1980, pp. 305-320, Addison Wesley Publishing Company, ISBN 0-201-02758-5.