Empirical Software Engineering

CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@ engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www. engr.smu.edu/~tian/ class/ 8340.02f

Module IIa: Risk Identification

- Risk Identification in ESE
- Techniques and Applications
- Comparison and Recommendations
Risk Identification: Why?

- Observations and empirical evidences:
 - 80:20 rule: non-uniform distribution:
 - 20% of the modules/parts/etc. contribute to
 - 80% of the defects/effort/etc.
 - implication: non-uniform attention
 - risk identification
 - risk management/resolution

- Risk Identification in ESE:
 - 80:20 rule as implicit hypothesis
 - focus: techniques and applications

- Tian SQP paper (survey + comparison) + other technique/application papers
Risk Identification: How?

- Qualitative and subjective techniques:
 - causal analysis
 - Delphi and other subjective methods

- Traditional statistical techniques:
 - correlation analysis
 - regression models:
 - linear, non-linear, logistic, etc.

- Newer techniques:
 - statistical: PCA, DA, TBM
 - AI-based: NN, OSR
 - focus of our study
Risk Identification: Where?

- Characterizing the applications:
 - Goal/target: defect, effort, etc.
 - (80% in the 80:20 rule)
 - Contributor: module, component, etc.
 - (20% in the 80:20 rule)
 - Application domain

- 80% or target:
 - mostly quality or defect
 - (most of our examples also)
 - effort and other external metrics
 - typically directly related to goal
 - resultant improvement
Risk Identification: Where?

● 20% or contributor:
 ▶ 20%: risk identification!
 ▶ understand the link
 ▶ control the contributor:
 – corrections/defect removal/etc.
 – future planning/improvement
 – remedial vs preventive actions

● Application domain:
 ▶ industry: IT, telecom, NASA, etc.
 ▶ process: throughout all phases
 ▶ availability of measurement data
Trad. Tech.: Correlation

- Terminology:
 - r.v.: random variables
 - i.v.: independent (random) variable
 - also called predictor (variable)
 - d.v.: dependent (random) variable
 - also called response (variable)
 - observations and distribution

- Statistical distributions:
 - 1d: normal, exponential, binomial, etc.
 - 2d: independent vs. correlated
 - covariance, correlation (coefficient)
Trad. Tech.: Correlation

- Correlation coefficient:
 - ranges between -1 and 1
 - positive: move in same direction
 - negative: move in opposite direction
 - 0: not correlated (independent)

- Correlation analysis:
 - use correlation coefficient
 - linear (Pearson) correlation vs. non-parametric (Spearman) correlation
 - based on measurement type/distribution:
 - non-normal distribution
 - ordinal measurement etc.
Trad. Tech.: Correlation

- Correlation analysis: applications
 - understand general relationship
 - e.g., complexity-defect correlation
 - risk identification also
 - cross validation (metrics etc.)

- Correlation analysis: assessment
 - only partially successful
 - low correlation, then what?
 - data skew: 0-defect example
 - uniform treatment of data

- Conclusion: other risk identification techniques are needed.
Trad. Tech.: Regression

- Regression models:
 - as generalized correlation analysis
 - \(n \) i.v. combined to predict 1 d.v.
 - forms of prediction formula
 - \(\Rightarrow \) diff. types of regression models

- Types of regression models:
 - linear: linear function
 \[
 y = \alpha_0 + \alpha_1 x_1 + \ldots + \alpha_n x_n + \epsilon
 \]
 - log-linear: linear after log-transformation
 - non-linear: non-linear function
 - logistic: represent presence/absence of categorical variables
Trad. Tech.: Regression

- Regression analysis: applications
 - similar to correlation analysis
 - multiple attribute data

- Regression analysis: assessment
 - only partially successful
 - similar to correlation analysis
 - often marginally better (R-sqr vs c.c.)
 - same kind of problems
 - data transformation problem
 - synthesized metrics \sim regression model?

- Conclusion: other risk identification techniques are often needed.
New Techniques

- New statistical techniques:
 - PCA: principal component analysis
 - DA: discriminant analysis
 - TBM: tree-based modeling

- AI-based new techniques:
 - NN: artificial neural networks
 - OSR: optimal set reduction
 - others: pattern matching, abductive reasoning, etc.

- Focus of our study: rest 4 papers.
New Techniques: PCA & DA

- PCA: principal component analysis
 - idea of linear transformation
 - PCA to reduce dimensionality
 - effective in combination with other techniques: DA etc.

- DA: discriminant analysis
 - discriminant function
 - combine with other techniques

- Not really new techniques, but rather new applications in SE.

- 1/1996 Paper by Khoshgoftaar et al., IEEE Software
New Techniques: TBM

- TBM: tree-based modeling
 - similar to decision trees
 - but data-based (derived from data)
 - preserves tree advantages:
 - easy to understand/interpret
 - both numerical and categorical data
 - partition \(\Rightarrow\) non-uniform treatment

- TBM applications:
 - main: defect analysis
 - past: psychology, SE-Amadeus, etc.
 - reliability: TBRMs
 - expertise/experience from SMU team

- 2001 Paper by Tian et al., JSS 57(3)
New Techniques: NN

- NN: artificial neural networks
 - NN or ANN inspired by biological computation
 - neuron: basic computational unit
 - different functions
 - connection: neural network
 - input/output/hidden layers

- NN applications:
 - AI and AI problem solving
 - main: defect/risk identification

- 1995 Paper by Khoshgoftaar et al., ASE
New Techniques: OSR

- OSR: optimal set reduction
 - pattern matching idea
 - clusters and cluster analysis
 - similar to TBM but different in:
 - pattern extraction vs. partition
 - original paper by Briand et al., 1992

- OSR applications: 1993 Paper by Briand/Basili/Hetmanski, TSE 19(11)

- Other AI/pattern matching techniques:
 - rich literature
 - few applications
Risk Identification: Comparison

- Apply the GQM paradigm.

- Goals of comparison:
 - risk identification goal?
 - how effective in achieving this goal
 - relate to general modeling/analysis goals:
 - assessment/prediction/control
 - focus on control or improvement

- General questions:
 - assessment: accurate, over time
 - prediction: accurate and early
 - control: many aspects
 - useful information and guidance
 - easy to use for improvement actions
 - tracking improvement over time
Risk Identification: Comparison

- Specific questions for comparison:
 - accuracy
 - simplicity
 - early availability and stability
 - ease of result interpretation
 - constructive information and guidance for (quality) improvement
 - availability of tool support

- Comparison (metric):
 - qualitative based on above questions
 - quantitative in the future?

- Recommendation based on comparison and application environment.
Comparison: Accuracy

- Accuracy in assessment:
 - model fits data well
 - use various goodness-of-fit measures
 - avoid over-fitting
 - cross validation by review etc.

- Accuracy in prediction:
 - over-fitting ⇒ bad predictions
 - prediction: training and testing sets
 - within project: jackknife
 - across projects: extrapolate
 - prediction errors: type I & II

- General comparison here.
 (More quantitative comparison later.)
Comparison: Usability

- Can’t explain in a few words
 ⇒ difficulties with reception/deployment

- Simplicity & result interpretation?
 - technique easy to use/understand
 - what does it (the result) mean?
 - training effort involved
 - causal and other connections

- Tool and other support:
 - availability of easy-to-use tools
 - other support: process/personnel/etc.
 - direct impact on deployment
Comparison: Usefulness

- Early availability and stability
 - to be useful must be available early
 - focus on control/improvement
 - apply remedial/preventive actions early
 - track progress: stability

- constructive information and guidance
 - what: assessment/prediction
 - how to improve?
 - constructive information
 - guidance on what to do
 - example of TBRMs
Comparison Summary & Perspectives

• Summary of comparison:
 ▶ Figure 11.
 ▶ examples, and more examples to follow
 ▶ TBM good balance

• Recommendation:
 ▶ qualitative based on above questions
 ▶ quantitative in the future?

• Integration into SE Process